• Оптическое волокно: прокладка, особенности изготовления и технические характеристики. Прокладка волс в грунте (в земле) Как протягивать оптоволоконный кабель

    17 Прокладка и монтаж кабеля ТСВ 103х2х0,5 1 км 115 000,00
    1 Прокладка и монтаж ВОК 8 1 км 40 000,00
    2 Прокладка и монтаж ВОК 12 1 км 40 000,00
    3 Прокладка и монтаж ВОК 16 1 км 40 000,00
    4 Прокладка и монтаж ВОК 24 1 км 40 000,00
    5 Прокладка и монтаж ВОК 32 1 км 40 000,00
    6 Прокладка и монтаж ВОК 48 1 км 50 000,00
    7 Прокладка и монтаж ВОК 64 1 км 50 000,00
    8 Прокладка и монтаж ВОК 96 1 км 60 000,00
    9 Строительно-монтажные работы в помещения (без монтажа оконечного оборудования) 1 работа 12 000,00
    10 Прокладка и монтаж кабеля 10х2х0,5 - 50х2х0,5 1 км 100 000,00
    11 Прокладка и монтаж кабеля 100х2х0,5 1 км 115 000,00
    12 Прокладка и монтаж кабеля 200х2х0,5 1 км 134 000,00
    13 Прокладка и монтаж кабеля 300х2х0,5 1 км 169 000,00
    14 Прокладка и монтаж кабеля 400х2х0,5 1 км 187 000,00
    15 Прокладка и монтаж кабеля 500х2х0,5 1 км 224 000,00
    16 Прокладка и монтаж кабеля 6 00х2х0,5 1 км 260 000,00

    Прокладка оптического кабеля внутри зданий

    СМР по строительству линий связи вне зоны г. Москв

    (прокладка волоконно-оптического кабеля в грунт)

    (без стоимости материалов)

    Прокладка и монтаж ВОК 8 - ВОК 32 до 500 м.

    1 работа.

    180 000,00

    Прокладка и монтаж ВОК 8 - ВОК 32 от 501 м. до 1 км.

    1 работа.

    262 000,00

    Прокладка и монтаж ВОК 8 - ВОК 32 свыше 1 км.

    1 км

    262 000,00

    Прокладка и монтаж ВОК 48 - ВОК 64 до 500 м.

    1 работа.

    233 000,00

    Прокладка и монтаж ВОК 48 - ВОК 64 от 500 м. до 1 км.

    1 работа.

    314 000,00

    Прокладка и монтаж ВОК 48 - ВОК 64 свыше 1 км.

    1 км

    314 000,00

    Видео прокладка оптического кабеля


    Мы работаем с наличным, с безналичным типом расчетов, НДС.

    В черте городов и других населенных пунктов прокладка волоконно-оптических кабельных трасс вне зданий и сооружений производится в основном в телефонной канализации. Как правило, телефонная канализация устраивается из отдельных блоков (бетонные, асбестоцементные или пластмассовые трубы круглого сечения с внутренним диаметром 100 мм) на глубине от 0.4 до 1.5 метра, которые состыкованы герметично между собой. Смотровые колодцы, имеющие на своих стенах специальные консоли для укладки кабеля, размещаются на канализационной телефонной трассе через 40-100 метров.
    Кабели для прокладки в кабельную канализацию — это, как правило, кабели с гидрофобным заполнителем. Эти кабели обычно изготавливаются с использованием металлического ламината (алюминиевая фольга или гофрированная стальная лента) для защиты от влажности. (Возможно также изготовление неметаллического кабеля.) Гидрофобный заполнитель препятствует перемещению влаги в продольном направлении и в то же время защищает волокна.

    В телефонной канализации должен быть предусмотрен свободный канал, в котором прокладывается оптический кабель. При постройке канала в нем оставляется проволока, с помощью которой протяжку можно сделать быстрее и качественнее. При отсутствии проволоки протяжку кабеля осуществляют с помощью устройства протяжки каналов. Чаще всего это стеклопластиковый упругий пруток длиной до 150 м и диаметром 10 мм и более, на большой катушке (см. рис).

    Прокладка оптического кабеля по телефонной канализации.

    Кабельная канализация представляет из себя конструкцию, состоящую из труб, смотровых колодцев, устройств для монтажа и обслуживания кабельного хозяйства. К кабельной канализации можно отнести коллекторы, специализированные металлоконструкции мостов, вводные шахты. Подземная кабельная канализации строится с расчетом максимального пролета между смотровыми колодцами до 130 м., колодцы соединяются между собой одиночными или сгруппированными трубами из асбоцемента, полиэтилена, поливинилхлорида или пластика, диаметром 100мм. Трубы укладываются на глубину от 0,4 до 1,8 м.

    Смотровые колодцы различаются по материалу исполнения, конструкции, размерам и разделяются на:

    • Проходные (а)
    • Поворотные (б)
    • Разветвительные (в).

    Колодцы могут изготавливаться из кирпича и железобетона, выдерживать различные нагрузки, в зависимости от места установки, иметь различную конфигурацию, в зависимости от количества вводных каналов.

    Кабельная канализация позволяет быстро расширять существующую кабельную сеть, обеспечивает доступ для проверки, переконфигурации, ремонта и замены оптического кабеля.

    Прокладка оптического кабеля по кабельной (телефонной) канализации.



    Прокладка оптического кабеля по кабельной канализации может осуществляться ручным и механизированным способами. При ручном методе прокладки используется устройство для заготовки канала (УЗК), которое представляет собой стеклопластиковый пруток, диаметром 11мм. и длинной 150м.УЗК вводится в канал, по которому предполагается прокладывать оптический кабель и проталкивается до смежного колодца, в котором к концу прутка крепится кабель, после чего УЗК вытягивают обратно. При протяжке кабеля могут использоваться компенсаторы кручения (вертлюг) и кабельные чулки (для быстрого крепления кабеля к УЗК).

    При прокладке оптического кабеля в кабельной канализации не редко встречаются случаи обрушения, излома, деформации кабельных каналов, в таких случаях можно попытаться пройти место обрушения с помощью составных палок для протяжки. Палки для протяжки кабеля представляют собой дюралевые отрезки трубы длинной 1 метр, с резьбовыми соединениями с обоих сторон.Палки последовательно скручиваются и вводятся в кабельный канал, поскольку конструкция из палок более жесткая чем УЗК, с их помощью можно пройти места обрушения.

    Основные преимущества воздушной прокладки кабеля между зданиями:

    1. Легкость и оперативность монтажа (в отличие от подземной прокладки кабеля, данный вид монтажа не влечет за собой рытье траншей, уборки мусора и т.д.).
    2. Доступность (при подземной прокладке длина кабеля, соединяющего здания больше, чем в случае соединения по воздуху).
    3. Скорость и минимизация затрат на ремонт в непредвиденных ситуациях.
    4. Строительство воздушной линии - довольно бюджетный вариант. Это объясняется тем, что она почти не требует использования сложной техники, кранов и др.

    Недостатки воздушной прокладки:

    1. Подверженность внешним помехам (гроза, дождь, мороз).
    2. Возможность повреждений от физического воздействия других предметов (трение).
    3. Образование трещин при повышенной влажности, что грозит заменой линии.
    4. Малый срок эксплуатации.

    Воздушные линии коммуникаций

    Рис.1. Два здания соединены воздушной линией связи (воздушкой)

    На изображении:

    1 – объекты соединения (обычно, это жилые дома, офисы, квартиры),
    2 – стальной канат (провод, катанка, несущий трос),
    3 – телефонный кабель.

    Это наиболее простая схема того, что нужно получить по окончанию монтажных работ.

    Применение витой пары без фиксирующего металлического каната чревато быстрой порчей изделия. Это обусловлено тем, что телефонный кабель не рассчитан на агрессивное влияние сред (резкие порывы ветра, талый снег, обледенение). В идеале трос должен быть изолирован. В обычных случаях (при кабельной длине до 80 м) диаметр изоляции составляет 1 - 1.5 мм 2 . Покрытие кабеля служит антикоррозийной защитой. В противном случае, из-за своего малого сечения, изделие совсем скоро выйдет из строя (через год).

    Установка троса происходит путем фиксации к твердым выступающим предметам (арматура, мачты). Тут важно ограничить прикосновения троса c креплением на каждом здании. Отличия потенциалов могут привести к тому, что во время протекания тока по металлической конструкции, при наводке на витую пару , может возникнуть короткое замыкание. Заземление грузозащитного троса является обязательным. В редких случаях заземление происходит односторонне. Так как двусторонний метод является более эффективным. При этом нужно или с одной из сторон заземлять через емкость, или разделить стальную катанку на равные части, прибегнув к вставке пластины из стеклотекстолита.

    Воздушная линия посредством витой пары

    Кабель для подключения к сети (витая пара ), подвергающийся реалиям сурового климата, подвержен очень большой нагрузке. Витая пара, соединяющая дома еще больше страдает от возложенных на нее задач. Оптимальным выбором для прокладки кабеля по воздуху станет использование материала, предназначенного для наружной натяжки. Он отличается соответствующими техническими характеристиками. В лучшем случае линия связи обрабатывается термоактивной полимерной смолой (компаунд) или покрыта специальной водоотталкивающей краской (гидрофобом). Кабель с экраном полностью исключен из возможных вариантов. При угрозе замыкания такой экранированный кабель не поможет решить проблему, да и по цене он дороже.

    Для обеспечения защиты установок, подсоединенных к воздушной линии, от всевозможных перепадов напряжения, идеальным решением станут грозозащиты . Это специальный диодный мост, который реагирует на разность потенциалов между защитными кабелями, и замыкает их накоротко. Так же возможен отвод излишек статистического тока в заземление.

    При прокладке кабеля воздушным способом коммуникационная линия крепится к защитному проводу. Фиксировать можно любым диэлектриком, не входящий в контакт с окружающей средой. Считается, что оптимальным решением станут капроновые стяжки . С использованием стяжек, витая пара соединяется с несущим тросом в точках соединения, на промежутке 50-70 см. Нельзя допускать натяжку кабеля, чтобы избежать ситуации, когда вся нагрузка идет на него, а трос не выполняет свою основную функцию – несущую. Провисание витой пары должно быть в пределах разумного (на рис.1 для наглядности приведен неправильный вариант установки). Стяжки натягиваются максимально плотно, чтобы избежать всякого трения между изделиями. В случае излишней перетяжки может возникнуть повреждение конструкции кабеля (нужно, чтобы крепежная система имела плоскую поверхность, а ее ширина не менее 5-7 мм).

    Прокладка кабеля по воздуху

    Необходимые материалы:

    • оптоволокно
    • несущая проволока
    • фиксаторы (стяжки).

    Трос должен соответствовать размеру b+l, где l – дополнительная длина, рассчитанная на послабление и крепеж (рис.2).

    Рис.2. Схематический план воздушки

    1. Размотка кабеля на кровле первого здания.
    2. Замерить необходимое расстояние, на которое будет прокладываться воздушка от точки А до места установки оборудования (в нормальных условиях можно сделать расчет с запасом). На отмотанном кабеле нужно пометить точку А. Найти соответствующую пометку на проводе (предварительно отмерив, расстояние от крепления и до точки А, и обозначив ее на тросе). Трос укладывается параллельно кабелю (точка А кабеля к точке А провода).
    3. Отмерить на металлическом проводе длину (а+d) от точки А здания 1 (d – это погрешности замеров, которые обусловлены провисанием и отдаленностей от края точек А - объектов 1 и 2).
    4. На протяжении заданной длины необходимо провести равномерное распределение стяжек. Чел 1 и чел 3 фиксируют положение троса (рис.3), чел 2 крепит его. Кабель не должен висеть намного ниже троса.

    Рис.3. Технология крепления кабеля к тросу

    Можно считать, что подготовка воздушки к установке пришла к завершению. Часть незадействованного кабеля, который предназначен для 2 объекта, бережно сворачивается в бухту и фиксируется скотчем к проводу (так он не будет составлять дискомфорта во время прокладочных работ).

    Последнюю итерацию натяжки выполняют следующими методами:

    • Кабель можно перетянуть внизу и сделать натяжку с 1 объекта.
    • Осуществить выстрел между крыш двух зданий путем закидывания дротика с леской (можно воспользоваться арбалетом или газовым ружьем), где фиксируется конец воздушки на 1кровле. Дальше следует вытянуть изделие с кровли 2, используя прикрепленную леску.

    Метод №1: метод натяжки кабеля

    Имея в наличии 2 "буферных" троса (тонкий канат, плотная нить, которая выдержит вес конструкции), первый конец провода крепится к 1 кровле, а второй – к капроновой нити или веревке 1, после чего, вдоль здания опускается вниз (рис.4). Затем необходимо перенести конец веревки к объекту 2 (с учетом препятствий в виде растительности или других высоких выступов).

    С крыши 2 спускается конец веревки 2. Концы изделий связываются между собой и поднимаются на 2 объект. В общем, сейчас основной задачей является проконтролировать качественный процесс перетяжки конца веревки со смотанным кабелем на 2 объект. Теперь натягивается провод, разумеется, с допустимым провисанием. Провод крепко фиксируется на 2 объекте, затем идет прокладка кабеля и заземление провода.

    Рис. 4 Первый метод

    Метод №2: метод натяжки

    С кровли 2 в направлении кровли 1 прокладчик запускает с помощью оружия дротик с прикрепленной леской. Его берет установщик, который расположен на 1 кровле. Прокладчик 1 фиксирует леску к специально приготовленному кабелю, а установщик на 2 кровле по одобрительному сигналу от прокладчика на кровле 1 тянет кабель на себя (рис.5).

    Рис.5. Второй метод натяжения оптического кабеля при прокладке его по воздуху

    Для осуществления последнего метода часто применяют модель УЗК, получившую название пистолет для заброски воздушки Laserline.

    Основные характеристики ружья для прокладки кабеля Laserline:

    • Оружие оснащено лазером, что упрощает процесс прицела.
    • Размер лески, намотанной на катушку, составляет 465 м, то есть можно делать выстрелы на дальние расстояния.
    • Максимальный вылет лески - 40м.
    • Ружье идет в комплекте с газовыми баллонами, заправляемые CO2 (Рис. 6)
    • Для удобства можно запастись комплектом дротиков к нему.

    Внимание! Перед использованием необходимо ознакомиться с инструкцией.

    Компания ООО "Техкабельсистемс" осуществляет поставки оптоволокна, оптических муфт, арматуры и инструмента для прокладки оптического кабеля воздушным способом (между опорами, зданиями). Цена изделий указана в карточках товара или доступна по запросу. Из данной статьи вы узнаете, как протянуть, проложить кабель по воздуху: методы монтажа, условия крепления, стоимость работ и правила обращения с изделиями.


    Волоконно-оптические ли нии связи (ВОЛС) – система в основе которой лежит оптоволоконный кабель, предназначена для передачи информации в оптическом (световом) диапазоне. В соответствии с ГОСТом 26599-85 термин ВОЛС заменен на ВОЛП (волоко́нно-опти́ческая ли́ния переда́чи), но в повседневном практическом обиходе по прежнему применяется термин ВОЛС, поэтому в данной статье мы будем придерживаться именно его.

    Линии связи ВОЛС (если они корректно проведены) по сравнению со всеми кабельными системами отличаются очень высокой надежностью, отличным качеством связи, широкой пропускной способностью, значительно большей протяженностью без усиления и практически 100% защищенностью от электромагнитных помех. В основе системы лежит технология волоконной оптики – в качестве носителя информации используется свет, тип передаваемой информации (аналоговый или цифровой) не имеет значения. В работе преимущественно используется инфракрасный свет, средой передачи служит стекловолокно.

    Область применения ВОЛС

    Оптоволоконный кабель применяется для обеспечения связи и передачи информации уже более 40 лет, но из за высокой стоимости широко использоваться стал сравнительно недавно. Развитие технологий позволило сделать производство экономичней и стоимость кабеля доступней, а его технические характеристики и преимущества перед другими материалами быстро окупают все понесенные расходы.

    В настоящее время, когда на одном объекте используется сразу комплекс слаботочных систем (компьютерная сеть, СКУД, видеонаблюдение, охранная и пожарная сигнализации, охрана периметра, телевидение и др.), обойтись без применения ВОЛС не возможно. Только использование оптоволоконного кабеля делает возможным одновременное применение всех этих систем, обеспечивает корректную стабильную работу и выполнение их функций.

    ВОЛС все чаще применяется как основополагающая система при разработке и монтаже , в особенности для многоэтажных зданий, зданий большой протяженности и при объединении группы объектов. Только Волоконно-оптические кабели могут обеспечить соответствующий объем и скорость передачи информации. На основе оптоволокна могут быть реализованы все три подсистемы , в подсистеме внутренних магистралей оптические кабели применяются одинаково часто с кабелями из витых пар, а в подсистеме внешних магистралей они играют доминирующую роль. Различают оптоволоконный кабель для внешней (outdoor cables) и внутренней (indoor cables) прокладки, а так же соединительные шнуры для коммуникаций горизонтальной разводки, оснащения отдельных рабочих мест, объединения зданий.

    Не смотря на относительно высокую стоимость, применение оптоволокна становится все более оправдано и находит все более широкое применение.

    Преимущества волоконно-оптических линий связи (ВОЛС ) перед традиционными «металлическими» средствами передачи:

    • Широкая полоса пропускания;
    • Незначительное ослабление сигнала, например применительно к сигналу 10МГц оно составит 1,5 дБ/км по сравнению с 30дБ/км для коаксиального кабеля RG6;
    • Исключена возможность возникновения «земляных петель», так как оптоволокно является диэлектриком и создает электрическую (гальваническую) изоляцию между передающим и принимающим концом линии;
    • Высокая надёжность оптической среды: оптические волокна не окисляются, не намокают, не подвержены электромагнитному воздействию
    • Не вызывает помех в соседних кабелях или в других оптоволоконных кабелях, так как носителем сигнала является свет и он полностью остается внутри оптоволоконного кабеля;
    • Стекловолокно абсолютно не чувствительно к внешним сигналам и электромагнитным помехам (ЭМП), не имеет значения рядом с каким блоком питания проходит кабель (110 В, 240 В, 10 000 В переменного тока) или совсем рядом от мегаватного передатчика. Удар молнии на расстоянии 1 см. от кабеля не даст ни каких наводок и не отразится на работе системы;
    • Информационная безопасность - информация по оптическому волокну передаётся «из точки в точку» и подслушать или изменить ее можно только путем физического вмешательства в линию передачи
    • Оптоволоконный кабель легче и миниатюрней – его удобней и проще укладывать чем электрический кабель такого же диаметра;
    • Сделать ответвление кабеля без повреждения качества сигнала не возможно. Любое вмешательство в систему сразу обнаруживается на принимающем конце линии, это особенно важно для систем обеспечения безопасности и видеонаблюдения;
    • Пожаро- и взрывобезопасность при изменении физических и химических параметров
    • Стоимость кабеля снижается с каждым днем, его качество и возможности начинают превалировать над затратами на построение слаботочных на базе ВОЛС

    Идеальных и безупречных решений не существует, как и любая система, ВОЛС имеет свои недостатки:

    • Хрупкость стекловолокна – при сильном изгибании кабеля возможна поломка волокон или их замутнение из-за возникновения микротрещин. Для устранения и минимизации этих рисков применяются усиливающие кабель конструкции и оплетки. При монтаже кабеля необходимо соблюдать рекомендации производителя (где, в частности, нормируется минимально допустимый радиус изгиба);
    • Сложность соединения в случае разрыва – требуется специальный инструмент и квалификация исполнителя;
    • Сложная технология изготовления, как самого волокна, так и компонентов ВОЛС;
    • Сложность преобразования сигнала (в интерфейсном оборудовании);
    • Относительная дороговизна оптического оконечного оборудования. Однако, оборудование является дорогим в абсолютных цифрах. Соотношение цены и пропускной способности для ВОЛС лучше, чем для других систем;
    • Замутнение волокна вследствие радиационного облучения (однако, существуют легированные волокна с высокой радиационной стойкостью).

    Монтаж систем ВОЛС требует от исполнителя соответствующего уровня квалификации, так как концевая заделка кабеля производится специальными инструментами, с особой точностью и мастерством в отличии от других средств передачи. Настройки маршрутизации и переключения сигналов требуют специальной квалификации и мастерства, поэтому в этой области не стоит экономить и бояться переплатить профессионалам, устранение нарушений в работе системы и последствий не правильного монтажа кабеля обойдется дороже.

    Принцип действия оптоволоконного кабеля.

    Сама идея передачи информации при помощи света, не говоря уже о физическом принципе работы большинству обывателей не совсем понятно. Мы не будем глубоко вдаваться в эту тему, но постараемся объяснить основной механизм действия оптоволокна и обосновать такие высокие показатели его работы.

    Концепция волоконной оптики опирается на фундаментальные законы отражения и преломления света. Благодаря своей конструкции стекловолокно может удерживать световые лучи внутри световода и не дает им «пройти сквозь стены» при передачи сигнала на многие километры. Кроме того не секрет, что скорость света выше.

    Волоконная оптика основывается на эффекте преломления при максимальном угле падения, когда имеет место полное отражение. Это явление происходит в том случае, когда луч света выходит из плотной среды и попадает в менее плотную среду под определенным углом. Например, представим себе абсолютно не подвижную гладь воды. Наблюдатель смотрит из под воды и меняет угол обзора. В определенный момент угол обзора становится таким, что наблюдатель не сможет видеть объекты, находящиеся над поверхностью воды. Этот угол называется углом полного отражения. При этом угле наблюдатель будет видеть только объекты, находящиеся под водой, будет казаться, что смотришь в зеркало.

    Внутренняя жила кабеля ВОЛС имеет более высокий показатель преломления, чем оболочка и возникает эффект полного отражения. По этой причине луч света, проходя по внутренней жиле, не может выйти за ее пределы.

    Существует несколько типов оптоволоконных кабелей:

    • Со ступенчатым профилем – типичный, самый дешевый вариант, распределение света идет «ступеньками» при этом происходит деформация входного импульса, вызванная различной длиной траекторий световых лучей
    • С плавным профилем «многомодовое» – лучи света распространяются с примерно равной скоростью «волнами», длина их путей уравновешена, это позволяет улучшить характеристики импульса;
    • Одномодовое стекловолокно – самый дорогой вариант, позволяет вытянуть лучи в прямую, характеристики передачи импульса становятся практически безупречными.

    Оптоволоконный кабель до сих пор стоит дороже чем другие материалы, его монтаж и заделка сложнее, требуют квалифицированных исполнителей, но будущее передачи информации несомненно за развитием именно этих технологий и этот процесс необратим.

    В состав ВОЛС входят активные и пассивные компоненты. На передающем конце оптоволоконного кабеля находится светодиод или лазерный диод, их излучение модулировано передающим сигналом. Применительно к видеонаблюдению это будет видеосигнал, для передачи цифровых сигналов логика сохраняется. При передаче инфракрасный диод модулирован по яркости и пульсирует в соответствии с вариациями сигнала. Для принятия и преобразования оптического сигнала в электрический, на принимающем конце, как правило находится фотодетектор.


    К активным компонентам относятся мультиплексоры, регенераторы, усилители, лазеры, фотодиоды и модуляторы.

    Мультиплексор – объединяет несколько сигналов в один, таким образом для одновременной передачи нескольких сигналов реального времени можно использовать один оптоволоконный кабель. Эти устройства незаменимы в системах с недостаточным или ограниченным числом кабелей.

    Существует несколько типов мультиплексоров, они различаются по своим техническим характеристикам, функциям и области применения:

    • спектрального разделения (WDM) – самые простые и дешевые устройства, передает по одному кабелю оптические сигналы от одного или нескольких источников, работающих на различных длинах волн;
    • частотного-модулирования и частотного мультиплексирования (FM-FDM) – устройства достаточно невосприимчивые к шуму и искажениям, с хорошими характеристиками и схемами средней степени сложности, имеют 4,8 и 16 каналов, оптимальны для видеонаблюдения.
    • Амплитудной модуляции с частично подавленной боковой полосой (AVSB-FDM) – с качественной оптоэлектроникой позволяют передавать до 80 каналов, оптимальны для абонентского телевидения, но дороговаты для видеонаблюдения;
    • Импульсно-кодовой модуляции (PCM – FDM)– дорогостоящее устройство, полностью цифровое применяется для распространения цифрового видео и и видеонаблюдения;

    На практике часто применяются комбинации этих методов. Регенератор - устройство, осуществляющее восстановление формы оптического импульса, который, распространяясь по волокну, претерпевает искажения. Регенераторы могут быть как чисто оптическими, так и электрическими, которые преобразуют оптический сигнал в электрический, восстанавливают его, а затем снова преобразуют в оптический.

    Усилитель -усиливает мощность сигнала до требуемого уровня напряжения тока, может быть оптическим и электрическим, осуществляет оптико-электронное и электронно-оптическое преобразование сигнала.

    Светодиоды и Лазеры - источник монохромного когерентного оптического излучения (света для кабеля). Для систем с прямой модуляцией, одновременно выполняет функции модулятора, преобразующего электрический сигнал в оптический.

    Фотоприёмник (Фотодиод) - устройство, принимающее сигнал на другом конце оптоволоконного кабеля и осуществляющее оптоэлектронное преобразование сигнала.

    Модулятор - устройство, модулирующее оптическую волну, несущую информацию по закону электрического сигнала. В большинстве систем эту функцию выполняет лазер, однако в системах с непрямой модуляцией для этого используются отдельные устройства.

    К пассивным компонентам ВОЛС относятся:

    Оптоволоконный кабель выполняет функции среды для передачи сигнала. Наружная оболочка кабеля может быть изготовлена из различных материалов: поливинилхлорида, полиэтилена, полипропилена, тефлона и других материалов. Оптический кабель может иметь бронирование различного типа и специфические защитные слои (например, мелкие стеклянные иглы для защиты от грызунов). По конструкции может быть:


    Оптическая муфта - устройство, используемое для соединения двух и более оптических кабелей.

    Оптический кросс - устройство, предназначенное для оконечивания оптического кабеля и подключения к нему активного оборудования.

    Спайки – предназначены для постоянного или полупостоянного сращивания волокон;

    Разъемы – для повторного присоединения или отключения кабеля;

    Ответвители – устройства, распределяющием оптическую мощность нескольких волокон в одно;

    Коммутаторы – устройства, перераспределяющие оптические сигналы под ручным или электронным контролем

    Монтаж волоконно-оптических линий связи, его особенности и порядок.

    Стекловолокно очень прочный, но хрупкий материал, хотя благодаря защитной оболочке, с ним можно обращаться практически как с электрическим. Однако при монтаже кабеля следует соблюдать требования производителей по:

    • «Максимальному растяжению» и «максимальному разрывному усилию», выраженному в ньютонах (около 1000 Н или 1кН). В оптическом кабеле основное напряжение приходится на силовую конструкцию (укрепленный пластик, сталь, кевлар или их комбинация). Каждый тип конструкции имеет свои индивидуальные показатели и степень защиты, если натяжение превышает предусмотренный уровень, то оптоволокно может быть повреждено.
    • «Минимальному радиусу изгиба» – делать изгибы более плавными, избегать резких сгибов.
    • «Механической прочности», она выражается в Н/м (ньютоны/метры) – защита кабеля от физических нагрузок (на него можно наступить или даже наехать транспортом. Следует быть предельно осторожными и особо обезопасить места пересечения и соединения, нагрузка сильно увеличивается из-за малой зоны контакта.

    Оптический кабель обычно поставляется намотанным на деревянные барабаны с прочным пластиковым защитным слоем или деревянными планками по окружности. Внешние слои кабеля наиболее уязвимы, поэтому при монтаже необходимо помнить о весе барабана, беречь его от ударов, падений, предпринимать меры безопасности при складировании. Лучше всего хранить барабаны горизонтально, если же они все-таки лежат вертикально, то их края (ободы) должны соприкасаться.

    Порядок и особенности монтажа оптоволоконного кабеля:

    1. До начала монтажа необходимо осмотреть барабаны с кабелем на предмет повреждений, вмятин, царапин. При любом подозрении кабель лучше сразу отложить в сторону для последующего детального изучения или отбраковки. Короткие куски (меньше 2 км.) на непрерывность волокна можно проверить на просвет любым фонариком. Волоконный кабель для инфракрасной передаче так же хорошо передает обычный свет.
    2. Далее изучить трассу на предмет потенциальных проблем (острые углы, забитые кабельные каналы и т.д.), при их наличии внести в маршрут изменения для минимизации рисков.
    3. Распределить кабель по маршруту таким образом, чтобы точки соединения и подключения усилителей находились в доступных, но защищенных от неблагоприятных факторов местах. Важно, чтобы в местах будущих соединений оставался достаточный запас кабеля. Открытые концы кабеля должны быть защищены водонепроницаемыми колпаками. Для минимизации напряжения на изгиб и повреждений от проезжающего транспорта используются трубы. На обоих концах кабельной линии оставляют часть кабеля, его длина зависит от планируемой конфигурации).
    4. При прокладке кабеля под землей его дополнительно защищают от повреждений в локальных точках нагрузки, таких как контакт с неоднородным материалом засыпки, неровностями траншеи. Для этого кабель в траншее укладывают на слой песка 50-150 см. и сверху засыпают таким же слоем песка 50-150 см. Дно траншеи должно быть ровным, без выступов, при закапывании следует удалять камни, которые могут повредить кабель. Следует отметить, что повреждения кабеля могут возникнуть как сразу, так и в процессе эксплуатации (уже после засыпки кабеля), например от постоянного давления, не убранный камень может постепенно продавить кабель. Работы по диагностике и поиску и устранению нарушений уже закопанного кабеля обойдутся намного дороже, чем аккуратность и соблюдение мер предосторожности при монтаже. Глубина траншеи зависит от типа почвы и ожидаемой нагрузки на поверхности. В твердой породе глубина составит 30 см., в мягкой или под дорогой 1 м. Рекомендуемая глубина составляет 40-60 см., при толщине песчаной подстилки от 10 до 30 см.
    5. Чаще всего применяется укладка кабеля в траншею или в лоток прямо с барабана. При монтаже очень длинных линий, барабан помещается на транспортное средство, по мере продвижения машины кабель укладывается на свое место, при этом не стоит торопиться, темп и порядок размотки барабана регулируется вручную.
    6. При укладке кабеля в лоток самое главное не превышать критический радиус изгиба и механической нагрузки. Кабель следует укладывать в одной плоскости, не создавать точек сосредоточенных нагрузок, избегать на трассе резких углов, давления и пересечения с другими кабелями и трассами, не изгибать кабель.
    7. Протяжка оптоволоконного кабеля через кабельные каналы аналогична протяжке обычного кабеля, но не стоит прилагать излишних физических усилий и нарушать спецификации производителя. При использовании скоби хомутов помните, что нагрузка должна ложиться не на внешнюю оболочку кабеля, а на силовую конструкцию. Для уменьшения трения можно использовать тальк или гранулы из полистирола, по поводу применения других смазок необходимо консультироваться с производителем.
    8. В случаях, если кабель уже имеет концевую заделку, при монтаже кабеля следует быть особенно внимательными, что бы не повредить разъемы, не загрязнить их и не подвергать чрезмерной нагрузке в зоне соединения.
    9. После укладки кабель в лотке закрепляется нейлоновыми стяжками, он не должен сползать или провисать. Если особенности поверхности не позволяют использовать специальные кабельные крепления, допустимо применение хомутов, но с особой осторожностью, чтобы не повредить кабель. Рекомендуется применение хомутов с пластиковым защитным слоем, для каждого кабеля следует использовать отдельный хомут и ни в коем случае не стягивать вместе несколько кабелей. Между конечными точками крепления кабеля лучше оставить небольшую слабину, а не класть кабель в натяг, иначе он будет плохо реагировать на колебания температуры и вибрации.
    10. Если при монтаже оптоволокно все-таки было повреждено, пометьте участок и оставьте достаточный запас кабеля для последующего сращивания.

    В принципе, прокладка оптоволоконного кабеля не сильно отличается от монтажа обычного кабеля. Если соблюдать все указанные нами рекомендации, то проблем при монтаже и эксплуатации не возникнет и Ваша система будет работать долго, качественно и надежно.

    Пример типового решения по прокладке линии ВОЛС

    Задача – организовать систему ВОЛС между двумя отдельно стоящими зданиями производственного корпуса и административного здания. Расстояние между зданиями 500 м.

    Смета на монтаж системы ВОЛС
    №п/п Наименование оборудования, материалов, работ Ед. из-я Кол-во Цена за ед. Сумма, в руб.
    I. Оборудование системы ВОЛС, в том числе: 25 783
    1.1. Кросс оптический настенный (ШКОН) 8 портов шт. 2 2600 5200
    1.2. Медиаконвертер 10/100-Base-T / 100Base-FX, Tx/Rx: 1310/1550нм шт. 2 2655 5310
    1.3. Муфта оптическая проходная шт. 3 3420 10260
    1.4. Ящик коммутационный 600х400 шт. 2 2507 5013
    II. Кабельные трассы и материалы системы ВОЛС, в том числе: 25 000
    2.1. Оптический кабель с внешним тросом 6кН, центральный модуль, 4 волокна, одномодовый G.652. м. 200 41 8200
    2.2. Оптический кабель с внутренним несущим тросом, центральный модуль, 4 волокна, одномодовый G.652. м. 300 36 10800
    2.3. Прочие расходные материалы (разъемы, саморезы, дюбеля, изоляционная лента, крепления и т.п.) компл. 1 6000 6000
    III. ИТОГО СТОИМОСТЬ ОБОРУДОВАНИЯ И МАТЕРИАЛОВ (п.I+п.II) 50 783
    IV. Транспортно-заготовительные расходы, 10% *п.III 5078
    V. Работы по монтажу и коммутации оборудования, в том числе: 111 160
    5.1. Монтаж перетяжки ед. 4 8000 32000
    5.2. Прокладка кабеля м. 500 75 37500
    5.3. Монтаж и сварка разъемов ед. 32 880 28160
    5.4. Монтаж коммутационного оборудования ед. 9 1500 13500
    VI. ВСЕГО ПО СМЕТЕ (п.III+п.IV+п.V) 167 021

    Пояснения и комментарии:

    1. Общая протяженность трассы 500 м., в том числе:
      • от забора до производственного корпуса и административного здания составляет по 100 м. (итого 200 м.);
      • вдоль забора между зданиями 300 м.
    2. Монтаж кабеля осуществляется открытым способом, в том числе:
      • от зданий до забора (200 м.) по воздуху (перетяжка) с применением специализированных для прокладки ВОЛС материалов;
      • между зданиями (300 м.) по забору из железобетонных плит, кабель закрепляется по середине полотна забора при помощи металлических клипс.
    3. Для организации ВОЛС используется специализированный самонесущий (встроенный трос) бронированный кабель.

    Говорят, прокладка оптического кабеля по дну океана обходится англо-французскому концерну Алкатель в миллиарды долларов. Одна жилка стекла толщиной 125 мкм способна обеспечить скорость сотни терабит/сек. Понятно, находится порядком желающих связать материки. Нельзя сказать, чтобы соединение было слишком надежным. В 2011 году новости сообщили: одна бабушка оставила без интернета страну. Давайте посмотрим…

    Оптический кабель

    Передача информации по волоконно-оптическому кабелю

    Пенсионерка из Грузии искала медь… Натолкнулась на кабель местной телекоммуникационной компании. Интерната лишилась большая часть Грузии, практически полностью Армения. Современное оптоволокно способно на большие подвиги. Первые исследования начались в середине 19-го века, в следующем представлен на суд публики ряд изобретений:

    1. Гастроскоп на основе оптоволокна разработан в 1956 году университетом штата Мичиган.
    2. В 1963 году Дзюнъити Нисидзава впервые применил оптическое волокно для связи.
    3. Первая работоспособная оптическая линия связи продемонстрирована в 1965 году Германией.
    4. Первый оптический кабель с приемлемым затуханием разработали сотрудники STC Чарльз Као, Джордж Хокем. Присуждена Нобелевская премия. Учеными поднят вопрос чистоты стекла, показаны способы улучшения параметров корректировкой технологических процессов.

    Передача информации по кабелям эксплуатирует способность света переотражаться внутренними стенками. Внутри остается большая часть энергии. Процесс полного отражения на грани стекла начинается под углом 38 градусов. Сигнал затухает медленно. Концерн Алькатель применяет репитеры для поддержания уровня. Каждый весит полтонны. Можете представить, насколько сложна прокладка волоконно-оптического кабеля дном океана.

    Вначале отрез длиной 4000 км грузится три недели на корабль. Процесс проходит со скоростью 100 метров в минуту. Внутри огромного отсека рабочие укладывают кабель кольцами вокруг вертикального стального стержня, слоями, по принципу катушки. Занимается несколько человек, вес изделия сравнительно высок. Каждый кабель сформирован множеством переплетенных нитей стекла, сверху жгут покрывается стальным экраном, придающим изделию прочность.

    Для производства кабелей разработана технологическая линия. Будущий экран из полосы свивается полукольцом, внутрь закладывается жила оптоволокна. Конструкция протягивается через ряд стальных роликов уменьшающегося калибра, напоминает цикл изготовления медных кабелей. По шву проходится сварка, кабель готов. Осталось покрыть влагонепроницаемой оболочкой. Кабель выдерживает огромные нагрузки, аналогичного рода испытания проходят любые изделия. В РФ, по нормативам, волосок стекла выдерживает усилие на разрыв 7 кг.

    Методы стыковки оптического кабеля

    Способы прокладки оптических кабелей мало нового сообщат традиционным, методика стыковки иная. Главным требованием здесь является отсутствие механических повреждений. Если волокно поцарапать, часть энергии будет теряться. Качество соединения характеризуется величиной потерь в дБ. Достигнувший цифры 0,4 дБ стык считается браком. Хорошее сварное соединение обеспечит показатель 0,01 дБ. Чтобы выдержать жесткие требования, выпускается специальное оборудование производства работ. Сегодня получили распространение следующие способы соединения оптических кабелей, монтажа разъемов.

    Сварка

    Является самым простым способом, подвластны любые типы оптического кабеля. Параметры которых забиты в программный модуль аппарата. Посещая меню, техник выбирает нужный тип. Процедура схожая.


    Сварка кабеля

    Для начала найдем гильзу (КДЗС) на волоконно-оптический кабель соответствующей толщины. Изоляция зачищается на пару-тройку сантиметров. Кевларовая оплетка снимается (если имеется). После жила обжигается сварочным аппаратом специальным захватом. Необходимо, чтобы избавиться окончательно от изоляции. Конец обрезается (обламывается) резаком (конструктивно входит в состав сварочного аппарата). Помогает сечению стать идеально гладким. Поочередно обрабатываются оба конца, на один наденем термоусадочную гильзу.

    Процесс сварки занимает считаные секунды, для контроля качества аппарат может транслировать видео (не нравится - переделайте). На дисплее появляется значение потерь соединения в дБ. Сотые доли.

    Механические соединения

    Обладают достоинством: разбираются н-ное количество раз. Для исполнения работ приобретается специальная муфта, без инструмента трудно обойтись: придется зачистить изоляцию на указанное расстояние (десятки мм). После кончики ровно срезаются при помощи приспособления, напоминающего стеклорез. Концы заводятся в муфту, зажимаются. Монтаж считается оконченным. Одну муфту используем для волоконно-оптических жил разного диаметра, применяя специальные переходные вкладыши. Немного меняется мелочами процесс подготовки.

    Коннекторы

    На входе распределительных коробок, при подключении оборудования пользователей чаще используют коннекторы. Специальные разъемы демонстрируют большие потери, позволяя бесчисленное количество раз изменять коммутацию. У каждой фирмы собственные технологии. Гиганет разработана инструкция, комплектующая специализированные инструменты.

    • Зачистка кабеля – искусство. На указанную длину снимаются внешняя изоляция, оплетка, зачищается внутренний слой (до жилы).

    В последнем случае действовать нужно аккуратно, освобождая стекло от излишков материала сантиметрами. Важно не сломать жилу, не отколоть. Малейшая царапина увеличивает потери через стенки. Обломки стекла легко занозят кожу.

    • Зачистка окончена, пора одевать изоляторы, корпус разъема. Центральная жила заведомо протаскивается с большим запасом.
    • Разъем зальем компаундом, идущим в комплекте, пока через центральное отверстие не проклюнется маленькая капелька. Важно не перестараться, не объединить внешний, внутренний круги коаксиала.
    • Несущее стекловолокно смазывается отвердителем. Стыковка производится быстро, чтобы смесь не успела схватиться.
    • После стеклорезом (продается фирмой Гиганет) жила надрезается, обламывается с небольшим запасом.
    • Начинается процесс шлифовки шкуркой малой крупности. Для контроля качества послужит микроскоп. Если обнаружен скол ниже поверхности контакта разъема, работу остается начать сначала. Шлифовка ведется, пока поверхность не станет идеально ровной.
    • Затем следуют доводочные процедуры, изделие можно применять.

    Как прокладывать оптический кабель

    Внутри подъездов, домов оптический кабель прокладывается, следуя обычным нормам. Поверхность несгораемая, для монтажа используется упаковочная лента, набиваемая на дюбель-гвозди. Фактически кабель приравнивается к связным проводам. Попробуем оценить пригодность!

    1. Оптический кабель для прокладки в грунте (земле) снабжен особой маркировкой. Присутствует буква З после ОК (оптический кабель). Некоторые правила прокладки оптического кабеля, способ маркировки указаны ГОСТ Р 52266.
    2. Оптический кабель для внутренней прокладки маркируется литерой С.
    3. Оптический кабель для внешней прокладки как таковой не существует. Ассортимент включает подводный (Н), воздушный (В), полевой (П) кабели.
    4. Особо гибкие шнуры помечаются буквой Ш. Можно гнуть, забыв ограничения.

    Подготовка к укладке кабеля

    Прокладка, монтаж оптических кабелей ведутся согласно пожароопасности. Если оплетка сделана с учетом особенности, к маркировке прибавляются литеры:

    • НГ – не распространяющий горение.
    • LS (low smog) низкое выделение дыма, газа при горении.
    • HF – пониженная коррозийная активность продуктов сгорания.
    • FR (fire resistance) – повышенная огнестойкость.

    Пригодится, правила использования почитаете во втором разделе ПУЭ 6. Сейчас не в моде, таблицы 2.1.2, 2.1.3, приводят сведения, дающие живое представление, как принято вести монтаж. Речь идет об электрике, сомневающихся спросим – не наблюдали, как горят волоконно-оптические кабели для внешней прокладки? При некоторой мощности начинается резонансный процесс, в ходе которого плотность энергии столь велика, что температура достигает 10000 градусов. Хватит устроить пожар.

    И хотя один тонкий волосок стекла может снабжать интернетом район, не забывайте: волоконно-оптические кабели для внутренней прокладки плохо изучены. Хотя первая телефонная сеть Москвы заработала в 1986 году, последнюю устаревшую (1949 год) убрали в 2011. Явления огня в волоконно-оптических кабелях ещё даже не исследовалось, хотя провайдеры поголовно перешли на технологию. Увидите, единого стандарта на прокладку даже не имеется. ГОСТ целиком ссылается на рекомендации более узких технических условий. Именно так регламентируются рабочая температура, минимальный радиус изгиба, условия эксплуатации. Даже инструменты не перечисляются, отечественных наработок крайне мало, каждая фирма гнет свою линию.


    Прокладка по траншее

    Отдельно по монтажу следует почитать Руководство по прокладке, монтажу и сдаче в эксплуатацию волоконно-оптических линий связи. Для исключения помех кабель прокладывается внутри трубы ПНД с внутренним диаметром 25 мм, внешним – 32 мм. Не допускается рядом тянуть связные сети из меди. Разрешается прокладка оптических кабелей в кабельной канализации рядом (количеством 5-6). При необходимости в будущем докладки медных проводов связи следует применять трубу ПНД, лучше заранее предусмотреть вариант, сделать, как написано выше. Требование распространяется на участки длиной более 2 км.

    Стандарт указывает, чем предваряется прокладка оптического кабеля связи:

    1. Согласно тексту, труба ПНД поставляется бухтами. Используя факт, можно сказать, годится ли лежащая на прилавке.
    2. Если труба под волоконно-оптический кабель застревает в канале меж колодцами, нужно несколько раз провернуть.
    3. Обрезка в траншее ведется, оставляя запас. Затем на входе в канал труба стягивается хомутом, удерживается на месте.

    Прочие нормы по поводу укладки в грунт аналогичного рода. Смотрятся доморощенным, но прокладка оптического кабеля в канализации превращается в ряд простых дежурных задач. По монтажу можно также заглянуть в СНиП 3.05.07. Приведен раздел, касающийся прокладки трассы волоконно-оптического кабеля в здании. Указывается, что расстояние между крепежом не превышает одного метра, а при проходе углов на каждой поверхности линия пристреливается к стене.

    Документы старые. Нигде не говорится о том, что оптический кабель наружной прокладки может следовать по воздуху. Выпущены давно самонесущие разновидности. Некоторые главы по волоконно-оптическим кабелям актуальны и сегодня.

    vashtehnik.ru

    Оптоволокно – настоящий прорыв в коммуникационных технологиях. Сегодня, благодаря такого рода кабелям достигается высокоточная и быстра передача сигнала на большие расстояния без потери качества. Однако есть у этой технологии один минус: кабель приходится «тянуть», окутывая его паутиной город.
    • Способы прокладки
    • Этапность
    Правила прокладки оптоволоконного кабеля оговариваются многими моментами. Первое, c чем необходимо определиться, это тип кабеля. Он зависит от условий и способа прокладки, а также от объекта монтажа. Например, при воздушной прокладке кабеля используется подвесной или самонесущий оптоволоконный кабель. Универсальный, который является более мягким и легким, применяется внутри помещения. В кабельной канализации укладывают более надежный тяжелый кабель с элементами, защищающими от вредного воздействия окружающей среды. Если кабель укладывают в грунт, то применяют специальные полимерные трубы, защищающие от грызунов и подвижек грунта, снабжают центральным силовым стальным элементом. Сам же кабель оснащен броней – металлической сеткой. Наиболее часто кабель прокладывают в кабельную канализацию или укладывают в грунт. Но существуют и другие способы, более современные, среди них: монтаж, используя бурение в горизонтальном направлении, наматывание на грозотрос или укладка в асфальт, когда возводится дорожное покрытие. В зданиях правила прокладки кабеля позволяют использовать слаботочные каналы или пустоты за подвесным потолком. Помимо этого возможна укладка в специальные лотки. При установке кабеля в здании следует строго следить за радиусами изгиба (они не должны быть менее допустимых для каждого кабеля индивидуально). Все кабеля, применяемые в зданиях, должны пройти проверку в соответствии с условиями пожарной безопасности. При прокладке под землей (в грунт) необходимо выкапывать траншеи не менее 1м глубиной, учитывая запас по длине в тех местах, где кабель соединяется, а также на концах трасс. Герметичность кабеля является основным требованием при его прокладке по кабельному колодцу.

    При воздушной прокладке учитываются все нагрузки, действующие на воздушно-кабельный переход. Например, необходимо учитывать его провисание, меняющееся в зависимости от скачков температуры и силы натяжения кабеля, для расчета его длины. Если знать предельную прочность кабеля на разрыв, можно рассчитать его натяжение, которое составляет не более 60% от прочности, тогда можно гарантировать надежность прокладки по опорам.

    Процесс прокладки кабеля состоит из двух этапов – подготовительного и основного. Для подготовительного этапа необходимо провести внешний осмотр и рассчитать оптические характеристики. При внешнем осмотре основной упор делается на проверке целостности и отсутствии повреждений, например, в изоляции и в кабельном барабане. Также проверяется соответствие данных, указанных в паспорте (прилагается к каждой катушке) и указанных на барабане. В первую очередь при проверке оптических характеристик определяют погонное затухание оптоволоконного кабеля и сравнивают с паспортными. Заодно проверяют целостность оптических волокон. После этого переходят к основному этапу.

    Источники:

    • Особенности работы с оптоволокном

    Распечатать

    Как проложить оптоволоконный кабель

    www.kakprosto.ru

    2.3.2 Способы прокладки оптических кабелей при построении волс

    Существует несколько способов прокладки волоконно-оптического кабеля, все они обладают своими достоинствами и недостатками, отличаются способами и условиями проведения работ. При различных способах прокладки используются специальные типы оптического кабеля. Основными способами являются:

      прокладка кабеля в грунт («ручным» способом в траншею; безтраншейный, с помощью ножевых кабелеукладчиков; в полиэтиленовых трубах проложенных в грунт);

      прокладка в кабельной канализации (в канале кабельной канализации; по защитным трубам, проложенным в канале кабельной канализации);

      подвес кабеля с силовым элементом на опорах (линий электропередач; освещения, городского транспорта, ЖД транспорта и т. д.);

      прокладка внутри зданий и помещений (внутриобъектовая прокладка);

      прокладка через водные преграды.

    Строительство ВОЛС считается очень сложным производственным процессом. В частности, каждая прокладка магистральной линии в зависимости от условий использования (в земле или на опорах) требует правильного и качественного выбора определенного типа кабеля. Немаловажное значение имеет опыт обращения с оптоволокном и квалификация специалиста, без которой высококачественный монтаж и соединение системы будут просто невозможны. Даже укладка волоконно-оптического кабеля в помещении потребует усиленного внимания и специфических навыков, не используемых в обычной прокладке электрических проводов.

    Прокладка волоконно-оптического кабеля в грунт. Это наиболее распространенный способ прокладки ВОЛС в местах с отсутствием кабельной канализации. К сожалению, такой способ дороже воздушной прокладки кабеля и занимает больше времени. Но основным преимуществом такой линии связи перед другими является превосходство в несколько раз по надежности.

    Прокладка волоконно оптического кабеля осуществляется в грунтах всех категорий, за исключением грунтов, подверженных мерзлотным деформациям.

    Прокладка оптического кабеля в грунт осуществляться при температуре окружающего воздуха не ниже -10° С. При более низких температурах (но не ниже -30°С) кабель необходимо выдержать в течение двух суток в отапливаемом помещении и обеспечить прогрев его на барабане непосредственно перед прокладкой.

    Прокладка ВОЛС в открытый грунт предполагает использование бронированного кабеля. Толщина брони зависит от структуры земли (почвы) и зараженности ее грызунами. Кабельная броня должна соединятся в муфтах и заземляться для защиты волоконно-оптических систем передач от гроз и воздействия линий электропередач (особенно в местах сближения с опасными объектами). В некоторых случаях, например в случае прокладки кабеля ВОЛС в непосредственной близости от силовых линий (вдоль железных дорог), рекомендуется использовать оптический кабель без металлических элементов. При этом, для возможности идентификации и трассировки таких линий в будущем, на этапе строительства необходимо использовать специальные маркеры

    Существует два базовых способа прокладки оптоволоконного кабеля в грунт: это либо укладка кабеля в траншею (траншейный способ), либо используется бестраншейный метод с помощью кабелеукладчиков или установок горизонтально направленного бурения.

    Траншейный способ прокладки ВОЛС в грунте применяется чаще всего при монтаже группы кабелей, при этом ширина траншеи может быть такой, что транспортное средство (трактор) может поместиться непосредственно внутри траншеи. Прокладываются кабели в землю также и в обычные траншеи, шириной около 50 см, а также в мини-траншеи. Последние имеют ширину около десяти сантиметров. Они используются при прокладке ВОЛС в земле на коттеджных участках и газонах. Глубина прокладки кабеля таким способом не велика, зато при этом не портится внешний вид участков.

    Недостатком этого способа является его трудоемкость и малая производительность. Как правило, траншейный способ применяют, когда по условиям местности невозможно использовать кабелеукладчик. Устройство траншеи выполняется механизмами (экскаватором, фрезой) или вручную, если кабельная трасса проходит в местах, где нет возможности или запрещено использовать тяжелую технику. Кабель укладывается на подготовленную подушку на дне траншеи. Когда трассу пересекают различные препятствия, кабель под ними прокладывают в предварительно уложенную полиэтиленовую трубу, что также помогает защитить кабель на сложных участках трассы от воздействия внешней агрессивной среды, от механических повреждений грызунами. Обратная засыпка траншеи производится вынутым грунтом вручную или механизмами послойно (толщина каждого слоя 200 мм) с закладкой в траншею сигнальной ленты.

    Самым распространенным и экономичным способом бестраншейной прокладки ВОЛС является прокладка бронированного кабеля в землю с помощью ножевого кабелеукладчика благодаря высокой скорости механизированного процесса и достаточно высокой скорости укладки (рисунок 2.3). Она применима лишь на линиях сравнительно небольшой протяженности (не более 100 км). В основном эта технология используется при наличии плавно изменяющегося рельефа местности и относительно несложных грунтов, к тому же на тех направлениях, где в ближайшее время резкого увеличения трафика, требующего прокладки новых кабелей, не предвидится.

    Этим способом обеспечивается оптимальная глубина залегания трассы (около 1.2 метра). Технология выполнения работ предусматривает прорезание кабелеукладчиком в грунте узкой щели и укладка на ее дно кабеля. Прокладка в грунт ведется по специально разработанной схеме для оптоволоконного кабеля, когда кабельный барабан монтируют спереди трактора кабелеукладчика. Чтобы уменьшить высокие механические нагрузки (продольное растяжение, поперечное сжатие, изгиб, вибрация) на кабель, возникающие на пути его движения от барабана к выходу из кабеленаправляющей кассеты, создается принудительное вращение барабана и не допускается засорение кассеты кабелеукладачного ножа при осуществлении укладки кабеля в грунт. За процессом укладки ведется непрерывный контроль, предполагающий соблюдение следующих технологических параметров: неизменная скорость укладки; постоянный наклон кабелеукладчика; исключение резких изгибов кабеля; недопущение превышения допустимого растяжения оптоволоконного кабеля.

    Рисунок 2.3 – Прокладка оптического кабеля кабелеукладчиком

    На некоторых участках возможно комбинирование технологий. В местах перехода через автодороги, железные дороги, а так же реки, овраги и болота используется горизонтально-направленное бурение. На данных участках кабель прокладывается в заложенные трубы.

    При любом способе прокладки кабеля непосредственно в грунт в местах стыковки строительных длин отрываются котлованы для размещения оптических муфт и запаса оптики. Запас должен обеспечивать возможность подачи муфты в зону удобную для организации рабочего места монтажников. Для соединения строительных длин используются оптические муфты. Для обеспечения возможности измерения сопротивления изоляции наружных оболочек на каждой строительной длине или на участках из нескольких строительных длин из муфт в контейнер проводов заземления выводятся провода заземления, соединенные с броней. В контейнер с помощью перемычек можно соединять броню волоконно оптического кабеля, а при необходимости снимать перемычки и проводить измерения сопротивления изоляции.

    Прокладка волоконно-оптического кабеля в кабельной канализации. Прокладку оптических кабелей связи в кабельной канализации производят как ручным, так и механизированными способами с использованием типовых механизмов и приспособлений. При этом всегда необходимо строго соблюдать следующее требование: усиление тяжения, радиус изгиба, температура во время прокладки и допустимое сдавливающее усилие должны соответствовать требованиям технических условий на прокладываемый кабель чтобы избежать разрыва и скрытых повреждений волокон.

    Кабельная канализация состоит из трубопровода и колодцев (рисунок 2.4). Кабель прокладывается в кабельный трубопровод, а возможные соединения производятся в кабельных колодцах или кабельных шахтах. Смотровые колодцы имеют люки. Всю канализацию располагают под землей, а на поверхность выводят только люки смотровых колодцев, закрытые чугунными крышками, под которыми расположены стальные запирающиеся крышки.

    Перед прокладкой кабеля в кабельной канализации производится проверка на проходимость ее каналов и, если требуется, ремонт канализации, а также ремонт и дооснащение кабельных колодцев. Для более эффективного использования каналов кабельной канализации и возможности прокладки оптики в одном канале с медными кабелями в них прокладываются защитные полиэтиленовые трубы.

    1 – чугунные крышки; 2 – трубопроводы; 3 – кабель; 4 – смотровые колодцы; 5 – люки

    Рисунок 2.4 – Кабельная канализация

    Прокладка в кабельной канализации выполняется преимущественно методом затягивания вручную или с помощью лебедок. При прокладке оптоволокна в защитных трубах возможно применение метода проталкивания.

    Прокладка ведется с учетом следующих факторов:

      поворот трассы на угол 90° эквивалентен увеличению длины прямолинейного участка на 200 м;

      радиус изгиба ОК при прокладке не должен быть менее 20 наружных диаметров ОК;

      не допускается превышение величины тягового усилия, нормируемого для конкретного ОК;

      во избежание повреждения пластмассовых каналов кабельной канализации применяют синтетический тяговый фал (капроновый, полипропиленовый);

      не используют смазку для уменьшения трения при прокладке ОК, поскольку оболочка ОК может растрескаться или за счет полимеризации смазки может быть затруднено извлечение ОК из канала кабельной канализации;

      не допускается заталкивать ОК в изгиб канала кабельной канализации;

      барабан с ОК при прокладке должен равномерно вращаться приводом или вручную, но не тягой прокладываемого ОК.

    На сложных участках трассы и при наличии больших строительных длин кабеля, его прокладку производят в два направления с одного из транзитных колодцев (желательно углового), расположенного примерно на трети длины трассы. Вначале целесообразно проложить большую длину кабеля, затем оставшийся на барабане размотать, уложить «восьмеркой» возле колодца и далее проложить в другую сторону.

    Строительные длины оптического кабеля соединяются с помощью проходных или тупиковых оптических муфт различных конструкций. Конкретный тип муфт определяется исходя из условий размещения в колодце и указывается в проектной документации.

    В случае затяжки оптического кабеля с помощью тягового или лебёдочного механизма, в месте ввода кабеля в колодец, используется роликовый механизм, для предотвращения повреждения кабеля. Скорость протяжки кабеля не должна превышать 30 м/мин. В проходных колодцах кабель выкладывается по стенкам и подвязывается на консоли кабельными стяжками. Место ввода оптического кабеля в кабельный колодец герметизируется проходным сальником, для предотвращения заиливания, либо затопления каналов в весеннее время. В конечных колодцах оставляется достаточный кабельный запас для монтажа оптических муфт с выносом кабеля в специализированный автомобиль (оптическая лаборатория), в котором про проводится оптическое измерение и сварка волокон.

    Подвеска волоконно-оптического кабеля. Варианты подвески ВОК имеют ряд достоинств по сравнению с другими способами строительства: отсутствие необходимости отвода земель и согласований с заинтересованными организациями; уменьшение сроков строительства; уменьшение количества повреждений в районах городской застройки и промышленных зон; снижение капитальных и эксплуатационных затрат в районах с тяжелыми грунтами.

    Подвеска волоконно-оптических кабелей производится по уже установленным опорам и не требует тщательной предварительной подготовки трассы прокладки, поэтому более технологична и проще, чем прокладка в грунт.

    Для прокладки ВОЛС методом подвески к опорам часто используют подвеску оптоволоконного кабеля к стальному тросу, который натягивается между опорами на консолях. Применяется также подвеска оптоволоконного кабеля со встроенным тросом на консолях специальной конструкции.

    При подвеске оптоволоконного кабеля к стальному тросу каждая консоль крепится к опоре с помощью специальных шурупов. С учетом нормальной стрелы провеса высота установки консолей должна быть такова, чтобы расстояние от уровня земли до самой нижней точки кабеля составлял 4,5 м и более. К тросу оптоволоконный кабель крепится с помощью подвесов, выполненных из оцинкованной тонколистовой стали. Такие подвесы должны свободно перемещаться по стальному тросу и плотно охватывать оптоволоконный кабель.

    В случае подвески оптоволоконного кабеля, в который встроен несущий трос, применяется стандартная арматура и поддерживающий зажим. Для натяжного крепления самонесущего оптоволоконного кабеля применяют спиральные зажимы (перемонтаж спиральных натяжного и поддерживающего зажимов запрещен).

    Наиболее важное отличие прокладки путем подвеса волоконно-оптических кабелей от других способов состоит в том, что места сращивания двух строительных длин должны располагаться на опоре вместе с технологическим запасом кабеля, достаточным для спуска с опоры, а также для восстановительных работ в случае аварийных ситуаций на линии. Сращивание строительных длин волоконно-оптического кабеля всегда выполняется в монтажном автомобиле или палатке. Это обуславливает необходимость резервирования больших длин технологического запаса, чем при прокладке в грунт. Кроме того, необходимо уделить внимание надежному закреплению запаса, поскольку нахождение на опоре сопряжено с постоянным воздействием ветровых нагрузок

    Прокладка ВОЛС внутри зданий, по сравнению с другими видами монтажа, дело менее затратное и не представляет особых сложностей. Конструкция используемого для этих целей оптоволоконного кабеля более гибкая и легкая, а длина трасс небольшая, что значительно упрощает монтаж.

    Способы прокладки ВОЛС внутри здания, как правило, зависят от назначения помещения. В производственных помещениях, узлах связи прокладка ВОЛС и других коммуникаций осуществляется по кабелеростам, кабельным лестницам, направляющим. Иногда кабели закрепляются к потолку при помощи специальных крюков и подвесов. Прокладка ВОЛС внутри зданий по кабельным лоткам и направляющим производится с помощью кабельных роликов, лебедки, устройств для размотки кабельных барабанов.

    При строительстве внутри объектовых участков ВОЛС должен использоваться кабель, имеющий сертификат пожарной безопасности. Такой кабель можно узнать по букве «Н» в его маркировке. Он не горит, не поддерживает горение, не выделяет ядовитых газов, а разлагается на окись алюминия и воду.

    Прокладка ВОЛС через водные препятствия(по дну)– наиболее затратный способ прокладки оптоволоконного кабеля. Если речь идет о пересечении реки, то при наличии моста прокладка кабеля выполняется по нему, а при его отсутствии применяется подвеска с использованием воздушных опор либо же по дну водоема. Так, как среда прокладки ВОЛС меняется (была земля, а стала вода, или воздух) то тип кабеля тоже соответственно должен изменится. На берегу устанавливается оптическая муфта, в которой сращивается бронированный оптический кабель для прокладки в открытом грунте с самонесущим оптическим кабелем для подвески на опорах над рекой, или подводным, для прокладки ВОЛС по дну водных препятствий. В местах расположения соединительных муфт организовываются технологические запасы кабеля.

    На железнодорожном транспорте при строительстве ВОЛС наибольшее распространение нашли способы подвески волоконно-оптического кабеля на опорах контактной сети электрифицированных железных дорог и высоковольтных линиях автоблокировки, а также прокладка в трубопроводах. За счет воздушной подвески капитальные затраты на строительства снижаются до 30 % относительно его подземной прокладки . Вместе с этим время строительства ВОЛС значительно снижается. Одновременно обеспечиваются благоприятные условия для осмотра линейно-кабельных сооружений при планировании регламентных и профилактических работ в процессе технической эксплуатации линий передач, создаются благоприятные возможности для своевременного подъезда эксплуатационного персонала к месту производства работ, в том числе и аварийно-восстановительных.

    Основным преимуществом воздушной подвески волоконно-оптического кабеля является то, что практически не требуется предварительной подготовки трассы, так как она уже задана существующей воздушной линией. Кроме того, к минимуму сводятся строительство линейных устройств, так как они уже построены, а значит, время на строительство значительно снижается.

    Однако подвеска кабеля на опорах обладает некоторыми недостатками. Так, при подземной прокладке волоконно-оптический кабель менее подвержен воздействию отрицательных факторов, влияющих на устойчивое функционирование волоконно-оптических линий связи. Поэтому, при планировании и создании цифровых сетей связи железнодорожного транспорта необходимо учитывать последствия влияний внешних и внутренних дестабилизирующих факторов, а также оценивать меры, которые предпринимаются эксплуатационными подразделениями для обеспечения надежной и устойчивой работы сети связи в реальных условиях окружающей среды и принятой системы технической эксплуатации.

    studfiles.net

    Прокладка оптоволоконных кабелей

    Оптоволоконные кабели приобрели большую популярность благодаря их способности объединять сетевые устройства инфраструктуры. Их применение позволяет передавать данные на большие расстояния при более высокой пропускной способности (скорости передачи данных), чем при использовании других сетевых средств передачи данных.

    Оптическое волокно - это гибкий, но очень тонкий и прозрачный кабель из чистого стекла (кварца) толщиной в человеческий волос. В оптоволоконном кабеле биты кодируются в виде световых импульсов. Оптоволоконный кабель действует как световод, передавая свет двумя концами кабеля с минимальной потерей сигнала.

    Для аналогии представьте себе пустой рулон от бумажного полотенца, внутренние стенки которого покрыты зеркальной поверхностью длиной в тысячу метров, а также небольшую лазерную указку, используемую для передачи сигналов Морзе со скоростью света. По сути, именно так функционирует оптоволоконный кабель, только он имеет гораздо меньший диаметр и использует сложные светоизлучающие и принимающие технологии.

    В отличие от медных проводов, оптоволоконный кабель может передавать сигналы при более низком показателе ослабления, а также он абсолютно устойчив к воздействию электромагнитных и радиочастотных помех.

    В настоящее время оптоволоконные кабели используются в четырёх типах производства.

    • Корпоративные сети. Оптоволоконный кабель используется для прокладки магистральной кабельной системы и связи сетевых устройств, реализующих инфраструктуру.
    • Технология «оптоволокно до квартиры» и сети доступа. Технология «оптоволокно до квартиры» (Fiber to the Home, FTTH) используется для обеспечения постоянного подключения сетей широкополосного доступа для индивидуальных пользователей и небольших предприятий. Технология FTTH поддерживает использование высокоскоростного доступа в Интернет, а также дистанционной передачи данных, телемедицины и видео по запросу.
    • Сети дальней связи. Поставщики используют наземные оптоволоконные сети дальней связи для обеспечения международного и междугороднего соединения. Обычно эти сети действуют в диапазоне от нескольких десятков до нескольких тысяч километров и поддерживают скорость до 10 Гбит/с.
    • Подводные сети. Используются специальные оптоволоконные кабели для обеспечения надёжных высокоскоростных каналов с высокой пропускной способностью, которые способны работать в тяжёлых глубоководных условиях и пролегают через океаны.

    Мы сосредоточены на использовании оптоволоконного кабеля в рамках предприятия.

    Конструкция оптоволоконного кабеля

    Хотя оптоволокно очень тонкое, оно состоит из двух типов стекла и защищено наружным экраном. В частности, к компонентам оптоволокна относятся:

    • Сердечник - состоит из прозрачного стекла и является частью волокна, по которому проходит свет.
    • Оболочка оптического волокна - стекло, которое окружает сердцевину и выступает в качестве зеркала. Световые импульсы, которые проходят по сердцевине, отражаются оболочкой. Благодаря этому они удерживаются в сердцевине волокна, представляя собой феномен полного внутреннего отражения.
    • Внешняя оболочка - как правило, выполнена из поливинилхлорида (PVC), который защищает сердцевину и оболочку кабеля. В состав оптоволокна также могут входить укрепляющие материалы и буфер (обшивка), которые защищают стекло от царапин и влаги.

    Хотя сердцевина и оболочка восприимчивы к изгибам под острым углом, они стали менее им подвержены в результате изменения свойств на молекулярном уровне. Оптическое волокно прошло тщательную производственную проверку. Было доказано, что оптоволокно выдерживает минимум 20 тысяч кг на квадратный сантиметр. Оптическое волокно достаточно прочно, поэтому не повреждается во время установки и использования в тяжёлых природных условиях.

    Световые импульсы, которые представляют передаваемые данные в виде битов в среде, генерируются посредством:

    полупроводниковых устройств, называемых фотодиодами, которые определяют световые импульсы и преобразуют их в электрические сигналы, которые затем могут быть преобразованы в кадры данных.

    Примечание. Лазерный луч, передаваемый по оптоволоконному кабелю, может нанести вред глазам. Поэтому следует предпринимать меры предосторожности при работе с активным оптоволоконным кабелем.

    Оптоволоконные кабели можно классифицировать по двум типам.


    • Многомодовый оптоволоконный кабель (МОК): состоит из сердцевины большего диаметра и для передачи световых импульсов использует светодиоды. Импульс из светоизлучающего индикатора входит в многомодовое волокно под разными углами. МОК часто используется в локальных сетях, поскольку может функционировать с помощью недорогих светодиодов. Такой тип кабеля обеспечивает пропускную способность до 10 Гбит/с на расстоянии до 550 метров.

    На рис. 1 и 2 выделены характеристики МОК и ООК. Одно из основных отличий между МОК и ООК - значение дисперсии. Дисперсия - это рассеивание светового импульса в течение определённого промежутка времени. Чем больше дисперсия, тем больше потеря сигнала.

    Сетевые оптоволоконные разъемы

    Оптоволоконный разъём размещается на конце оптического волокна. Существуют различные разъёмы для оптоволоконных кабелей. Основные отличия между этими типами разъёмов состоят в размерах и методах механических соединений. Как правило, организации отдают предпочтение одному типу разъёма, в зависимости от используемого оборудования, или присваивают каждому типу волокна отдельный тип разъёма (один для кабелей МОК, другой - для кабелей ООК). В настоящее время используются около 70 типов всевозможных разъёмов.

    Как показано на рисунке 1, к трём наиболее распространённым типам разъёмов для оптоволоконных сетей относятся следующие.

    • Прямоконечный разъём (ST): устаревший тип разъёма, широко используемый с многомодовым волокном.
    • Разъём абонента (SC): также называется квадратным или стандартным. Этот тип разъёма, широко используемый в локальных и глобальных сетях, оснащён самозапирающимся механизмом для обеспечения надёжного монтажа. Также он используется с многомодовым и одномодовым оптоволоконным кабелем.
    • Светящийся разъём (LC): также называется малым или локальным разъёмом. Его популярность стремительно растёт благодаря небольшому размеру. Он используется с одномодовым оптоволоконным кабелем и поддерживает многомодовый кабель.

    Примечание. Другие разъёмы для волоконных кабелей, например обжимной соединитель (FC) или подминиатюрный А (SMA), редко используются в локальных и глобальных сетях. Биконический разъём и разъём D4 являются устаревшими типами разъёмов. Эти разъёмы не рассматриваются в данной главе.

    Поскольку по оптоволокну свет передаётся только в одном направлении, для работы в полнодуплексном режиме требуются два оптоволоконных кабеля. Таким образом, оптоволоконные соединительные кабели могут связывать два оптоволоконных кабеля с парой стандартных разъёмов. Некоторые оптоволоконные разъёмы можно подсоединить как к передающему, так и принимающему волоконному кабелю с помощью одного соединителя, который называется дуплексным соединителем. Он показан на рис. 1.

    Для соединения устройств инфраструктуры требуются соединительные оптоволоконные кабели. Некоторые из распространённых соединительных кабелей показаны на рис. 2.

    • Соединительный многомодовый кабель SC-SC
    • Соединительный одномодовый кабель LC-LC
    • Соединительный многомодовый кабель ST-LC
    • Соединительный одномодовый кабель SC-ST

    Неиспользуемые оптоволоконные кабели должны быть защищены небольшой пластиковой крышкой.

    Кроме того, обратите внимание на цветовые маркировки для различения одномодовых и многомодовых соединительных кабелей. Согласно стандарту TIA-598 жёлтая оболочка используется для одномодовых волоконных кабелей, а для многомодовых кабелей используется оранжевая (или цвета морской волны).

    Проверка оптоволоконных кабелей

    Оконцовка и соединение оптоволоконных кабелей требует специальной подготовки и оборудования. Неправильная оконцовка оптоволоконного кабеля приведёт к уменьшению расстояния распространения сигнала или полному нарушению передачи.

    К трём наиболее распространённым ошибкам при оптоволоконной оконцовке и соединении относятся следующие.

    • Смещение: оптоволоконные кабели не прилегают друг к другу при соединении.
    • Рассоединение: кабели не полностью соприкасаются при сращивании или соединении.
    • Полировка: концы кабелей недостаточно очищены от грязи.

    Для быстрой и простой проверки кабеля нужно использовать яркий электрический фонарь, направив его в один конец волокна и одновременно наблюдая за вторым концом. Если свет виден, то волокно может передавать свет. Хотя такая проверка не измеряет производительность волокна, она представляет собой быстрый и недорогой способ обнаружить поврежденное волокно.

    Для проверки оптоволоконных кабелей рекомендуется использовать оптический тестер, как показано на рисунке. Оптический рефлектометр временной области (OTDR) можно использовать для проверки каждого сегмента оптоволоконного кабеля. Это устройство вводит тестовый импульс света в кабель, измеряя обратное рассеивание и отражение света в зависимости от промежутка времени. Оптический рефлектометр рассчитывает приблизительное расстояние, на котором обнаружены проблемы, по всей длине кабеля.

    Оптоволоконные кабели и медные кабели

    Использование оптоволоконных кабелей даёт множество преимуществ по сравнению с медными кабелями.

    Поскольку волокна, используемые в оптоволоконной среде передачи данных, не являются проводниками тока, данная среда не подвержена электромагнитным помехам и не проводит нежелательный электрический ток благодаря заземлению. Так как оптические волокна тонкие и отличаются сравнительно малой потерей сигнала, их можно использовать на гораздо больших расстояниях по сравнению с медной средой передачи данных, без необходимости восстановления сигнала. Некоторые спецификации оптоволокна на физическом уровне обеспечивают передачу данных на несколько километров.

    При внедрении оптоволоконных кабелей следует учесть следующие моменты.

    • Больше затрат при прокладке на одинаковых расстояниях в отличие от медных кабелей (при этом они обеспечивают большую пропускную способность).
    • Требуются специальные навыки и оборудование для оконцовки и сращения инфраструктуры кабеля.
    • Требуют более осторожного обращения, нежели медные кабели.

    В настоящее время в большинстве корпоративных сред для создания кабельной магистрали и обеспечения высокоскоростных соединений «точка-точка» между устройствами, а также для связи в комплексе зданий предпочтительно использовать оптоволоконные кабели. Поскольку оптоволоконный кабель не проводит электричество и отличается малой потерей сигнала, он оптимально подходит для этих целей.

    На данном рисунке выделены некоторые отличия.

    Российские коммуникационные корпорации все более активно внедряют оптоволоконные решения. Это касается, в частности, сегмента B2C, в котором услуги доступа в интернет предоставляются для частных лиц. Граждане, подключившиеся к «оптоволокну», получают возможность выходить в интернет на самых высоких скоростях — в десятки мегабит. Ранее подобная скорость считалась совершенно невероятной. Внедрение оптоволоконных технологий позволяет значительно ускорить также и бизнес-процессы, и потому активными пользователями соответствующих решений становятся коммерческие предприятия. Какова специфика оптоволоконных кабелей как коммуникационного решения? Сколько стоит выстраивание соответствующей инфраструктуры?

    Основные преимущества оптоволокна

    Оптическое волокно как технология имеет ряд преимуществ в сравнении с традиционными типами кабелей. В числе таковых:

    Устойчивость к помехам, электромагнитным полям;

    Более высокая пропускная способность;

    Небольшая масса и легкость в транспортировке;

    Нет необходимости заземлять передатчик сингала и приемник;

    Нет коротких замыканий.

    Рассматриваемый тип кабелей способен передавать сигнал на очень большие расстояния. Оптическое волокно как ресурс для организации проводных коммуникаций активно стал внедряться в развитых странах в 70-е годы. Сейчас уровень проникновения соответствующих технологий в России — один из самых динамичных в Европе.

    Изучим теперь то, какими основными типами представлены оптоволоконные решения.

    Классификация оптоволоконных кабелей

    Оптическое волокно может применяться для выстраивания инфраструктуры связи:

    В рамках телефонных сетей;

    Как часть внутризоновых коммуникаций;

    В рамках магистральных сетей.

    В последнее время оптоволокно также задействуется как инструмент передачи данных на конечных участках абонентских линий. Соответствующие типы кабелей некоторые специалисты выделяют в отдельную категорию. Ранее на таких участках, как правило, задействовались DSL-решения, Ethernet-кабель типа «витая пара». Для современного рынка предоставления доступа в интернет наличие у абонента оптоволоконного модема — обычная практика.

    Можно отметить, что на рынке коммуникационных решений также присутствуют гибридные типы кабелей, сочетающие в себе оптоволокно и традиционные материалы.

    Особенности практического внедрения оптоволоконных решений

    Магистральные кабели используются для передачи данных на большие расстояния. Рассчитаны на одновременное подключение большого количества абонента. Чаще всего при выстраивании подобной инфраструктуры задействуется одномодовое оптическое волокно.

    Внутризоновые кабели используются главным образом для обеспечения многоканальной связи на расстояниях в пределах 250 км. В их структура задействуются чаще всего волокна, классифицируемые как градиентные.

    Городские кабели используются с целью обеспечения связи между АТС и различными узлами связи. Рассчитаны на передачу данных в пределах 10 км и организацию трансляции при большом количестве каналов. В городских оптоволоконных системах также задействуются, как правило, градиентные волокна.

    Выше мы отметили, что в инфраструктуре магистральных кабелей используется чаще всего одномодовое волокно. В чем его специфика и отличие от другого — многомодового?

    Одномодовые и многомодовые кабели

    Термин «мода» в данном случае — технический. Он обозначает совокупность световых лучей, которые формируют ту или иную интерференционную структуру. Моды самого низкого порядка характеризуются направленностью на поверхность распределения под большим углом. Таковые в единичном количестве пропускают одномодовые кабели. В свою очередь, многомодовое оптическое волокно характеризуется большей величиной световодного канала. Это делает возможным пропускание большого количества мод.

    Преимущества одномодовых кабелей

    Основное преимущество одномодовых кабелей — уровень сигнала в них, как правило, устойчивее, а скорость передачи данных при одних и тех же объемах ресурса — выше. Есть у соответствующих решений также и недостатки. В частности, одномодовые кабели требуют значительно более мощных, а значит, и дорогих источников излучения, чем те, что применяются с многомодовыми волокнами.

    Преимущества многомодового оптоволокна

    В свою очередь, кабели второго типа, что рассчитаны на пропускание большого количества мод, характеризуются прежде всего меньшей трудоемкостью монтажа, поскольку размер светопроводящего канала в них больше. Касательно излучателей выше мы отметили, что для многомодовых проводов они, как правило, дешевле. Вместе с тем оптоволоконные решения рассматриваемого типа слабо приспособлены для задействования в магистральных сетях в силу недостаточно высокой пропускной способности.

    Структура кабеля

    Оптические кабели связи устроены просто. Основа соответствующих элементов — волокна, изготовленные из светопроводящего кварцевого стекла. Данные компоненты заключены в защитную оболочку. В случае необходимости кабель может дополняться иными элементами — с целью придания конструкции большей прочности. Оптическое волокно имеет цилиндрическую форму. Оно рассчитано для передачи сигналов, обладающих длиной волны 0,85-1,6 мкм.

    Оптоволокно имеет двухслойную конструкцию. В нем присутствует сердцевина, а также оболочка, имеющие разные характеристики преломления. Первый компонент задействуется для трансляции электромагнитных сигналов. Оболочка призвана защищать канал от внешних помех, а также обеспечивать оптимальные условия отражения светового потока. Сердцевина кабеля изготавливается чаще всего из кварца. Оболочка в ряде случаев может быть полимерной.

    Как изготавливается оптоволокно?

    Рассмотрим то, каким образом осуществляется промышленный выпуск оптоволокна.

    В числе самых распространенных методов производства соответствующего материала — осаждение из газовой фазы посредством химической реакции. Данная процедура реализуется в несколько этапов. На первом изготавливается кварцевая заготовка, на втором — из нее формируется волокно. Данный процесс предполагает использование следующих веществ: хлорированный кварц, кислород, чистый кварц. Рассматриваемый способ производства оптоволокна характеризуется, прежде всего, возможностью обеспечивать высокую химическую чистоту материала. В некоторых случаях на заводе-изготовителе формируются также градиентные волокна с целевыми характеристиками преломления. Их возможно обеспечить за счет использования в ходе изготовления оптоволокна различных присадок — титана, фосфора, германия, бора.

    Конструкции кабелей

    Итак, мы изучили основные характеристики, которыми обладают оптические волокна, и особенности их изготовления. Рассмотрим теперь варианты конструкционной реализации соответствующих кабелей.

    Параметры, определяющие особенности соответствующих конфигураций, зависят от конкретной области применения оптоволокна. При всем многообразии конструкционных подходов выделяют 3 основные категории кабелей:

    Концентрической скрутки;

    С сердечником фигурной формы;

    Плоские ленточного типа.

    Оптоволоконные кабели первого типа имеют структуру, в целом схожую с таковой, что свойственна для электрических кабелей. Число волокон в таких решениях чаще всего — 7, 12 или 19. Кабели второго типа имеют, таким образом, сердечник — обычно пластмассовый, в котором размещаются светопроводящие каналы. Содержит данного типа кабель оптический 8 волокон, в ряде случаев - 4, 6 либо 10. Ленточные кабели имеют в своей структуре, соответственно, ленты, которые содержат определенное количество светопроводящих каналов. Как правило — 12, в ряде случаев — 6 или 8. Можно отметить, что в некоторых случаях рассматриваемый показатель, что характеризует кабель оптический — 16 волокон. Данная характеристика может предопределяться стандартами, принятыми в стране, в которой выпущено оптоволокно.

    Специфика прокладки оптоволоконных кабелей

    Изучим теперь основные особенности, которыми характеризуется прокладка оптического волокна. Специалисты рекомендуют придерживаться следующих основных правил при решении соответствующей задачи:

    Необходимо убедиться, что радиус кабеля больше, чем требуемый минимальный, что установлен для изгиба;

    Следует избегать использования каналов либо лотков с острыми краями;

    Укладывать кабели следует на плоскую поверхность;

    По возможности не следует соединять кабели под углом 90 градусов;

    Нужно избегать скручивания провода.

    Минимальный радиус изгиба обычно фиксируется в технических характеристиках кабеля, предоставляемых его фирмой-изготовителем. Специалисты в ходе монтажа рекомендуют придерживаться правила: оптоволокно с диаметром не более 2 см не должно выходить за минимальный радиус, если он не будет превышать 30 см.

    Инструменты для прокладки кабелей

    Для прокладки кабелей, о которых идет речь, потребуются различные инструменты. В числе таковых — скалыватель оптического волокна. Предназначен он для подготовки соответствующих материалов к сварке. Ее сущность в соединении светопроводящих элементов двух разных проводов за счет высокотемпературной обработки. Сварка оптического волокна также требует задействования специального аппарата.

    Сколько стоит внедрение оптоволокна?

    Ранее была популярна точка зрения, что монтаж оптоволоконных кабелей — дело не слишком рентабельное в силу высокой стоимости самих светопроводящих носителей, а также работ по их монтажу. Подобный тезис, вероятно, был актуален на тот период развития рынка, когда не предполагалось в достаточной мере высокого спроса на соответствующие коммуникации. Сейчас, как мы отметили выше — оптическое волокно уже не редкость для рядовых абонентов городских сетей.

    Но сколько же стоит внедрение решений, о которых идет речь? Очень многое зависит от конкретных типов проводов. Более того, установленная производителем на то или иное волокно (оптический кабель) цена — весьма поверхностный критерий издержек, связанных с внедрением соответствующей инфраструктуры. Очень важно рассматривать ее в сочетании с трудовыми затратами и потребностями в иных ресурсах, что необходимы для прокладки оптоволоконной сети. Таким образом, мы попробуем оценить то, сколько будет внедрить соответствующие решения с учетом совокупных затрат — не только на оптическое волокно, цена которого, как мы отметили выше, может значительно варьироваться, но также на привлечение специалистов для монтажа кабелей и закупку иных необходимых компонентов инфраструктуры, о которой идет речь.

    Выше мы классифицировали оптоволоконные решения, исходя из такого критерия как масштабы сетей. Так, если говорить о магистральных линиях, то прокладка 1 км оптоволокна обойдется примерно в 100-150 тыс. рублей. Что касается обеспечения функционирования городского узла связи — затраты на решение данной задачи составят порядка 100 тыс. руб. Выстраивание распределительной инфраструктуры на базе оптоволокна для отдельно взятого района обойдется примерно в 150 тыс. руб. Один узел связи, рассчитанный на подключение абонентов, обойдется примерно в 30 тыс. руб. В свою очередь, монтаж оборудования и кабелей для 100 абонентских линий обойдется примерно в 30 тыс. руб.

    Если провайдер решит бесплатно предоставлять оборудование для своих клиентов — в частности, оптоволоконные модемы, то каждый из соответствующих девайсов обойдется примерно в 1000 руб. Отметим, что, в силу сохраняющейся зависимости коммуникационного рынка РФ от импорта оптоволокна, соответствующие цены могут меняться в корреляции с курсом рубля.

    Таким образом, оптическое волокно в ряде случаев, действительно, может потребовать значительных инвестиций. Однако, по мере увеличения количества абонентов — соответствующие вложения будут окупаться. Многие современные российские провайдеры рассчитывают на это, модернизируя традиционные линии связи и внедряя высокотехнологичные оптоволоконные решения.