• Как называется самый крепкий металл в мире? Характеристики металла. Самые твердые металлы в мире Какой самый прочный металл на планете

    Окружающий нас мир таит в себе еще множество загадок, но даже давно известные ученым явления и вещества не перестают удивлять и восторгать. Мы любуемся яркими красками, наслаждаемся вкусами и используем свойства всевозможных веществ, делающих нашу жизнь комфортнее, безопаснее и приятнее. В поисках самых надежных и крепких материалов человек совершил немало восторгающих открытий, и перед вами подборка как раз из 25 таких уникальных соединений!

    25. Алмазы

    Об этом точно знают если не все, то почти все. Алмазы – это не только одни из самых почитаемых драгоценных камней, но и один из самых твердых минералов на Земле. По шкале Мооса (шкала твёрдости, в которой оценка дается по реакции минерала на царапание) алмаз числится на 10 строчке. Всего в шкале 10 позиций, и 10-ая – последняя и самая твердая степень. Алмазы такие твердые, что поцарапать их можно разве что другими алмазами.

    24. Ловчие сети паука вида Caerostris darwini


    Фото: pixabay

    В это сложно поверить, но сеть паука Caerostris darwini (или паук Дарвина) крепче стали и тверже кевлара. Эту паутину признали самым твердым биологическим материалом в мире, хотя сейчас у нее уже появился потенциальный конкурент, но данные еще не подтверждены. Паучье волокно проверили на такие характеристики, как разрушающая деформация, ударная вязкость, предел прочности и модуль Юнга (свойство материала сопротивляться растяжению, сжатию при упругой деформации), и по всем этим показателям паутина проявила себя удивительнейшим образом. Вдобавок ловчая сеть паука Дарвина невероятно легкая. Например, если волокном Caerostris darwini обернуть нашу планету, вес такой длинной нити составит всего 500 граммов. Таких длинных сетей не существует, но теоретические подсчеты просто поражают!

    23. Аэрографит


    Фото: BrokenSphere

    Эта синтетическая пена – один из самых легких волокнистых материалов в мире, и она представляет собой сеть углеродных трубочек диаметром всего в несколько микронов. Аэрографит в 75 раз легче пенопласта, но при этом намного прочнее и пластичнее. Его можно сжать до размеров, в 30 раз меньших первоначального вида, без какого-либо вреда для его чрезвычайно эластичной структуры. Благодаря этому свойству аэрографитная пена может выдержать нагрузку, в 40 000 раз превышающую ее собственный вес.

    22. Палладиевое металлическое стекло


    Фото: pixabay

    Команда ученых их Калифорнийского технического института и Лаборатории Беркли (California Institute of Technology, Berkeley Lab) разработала новый вид металлического стекла, совместивший в себе практически идеальную комбинацию прочности и пластичности. Причина уникальности нового материала кроется в том, что его химическая структура успешно скрадывает хрупкость существующих стеклообразных материалов и при этом сохраняет высокий порог выносливости, что в итоге значительно увеличивает усталостную прочность этой синтетической структуры.

    21. Карбид вольфрама


    Фото: pixabay

    Карбид вольфрама – это невероятно твердый материал, обладающий высокой износостойкостью. В определенных условиях это соединение считается очень хрупким, но под большой нагрузкой оно показывает уникальные пластические свойства, проявляющиеся в виде полос скольжения. Благодаря всем этим качествам карбид вольфрама используется в изготовлении бронебойных наконечников и различного оборудования, включая всевозможные резцы, абразивные диски, свёрла, фрезы, долота для бурения и другие режущие инструменты.

    20. Карбид кремния


    Фото: Tiia Monto

    Карбид кремния – один из основных материалов, используемых для производства боевых танков. Это соединение известно своей низкой стоимостью, выдающейся тугоплавкостью и высокой твердостью, и поэтому оно часто используется в изготовлении оборудования или снаряжения, которое должно отражать пули, разрезать или шлифовать другие прочные материалы. Из карбида кремния получаются отличные абразивы, полупроводники и даже вставки в ювелирные украшения, имитирующие алмазы.

    19. Кубический нитрид бора


    Фото: wikimedia commons

    Кубический нитрид бора – это сверхтвердый материал, по своей твердости схожий с алмазом, но обладающий и рядом отличительных преимуществ – высокой температурной устойчивости и химической стойкости. Кубический нитрид бора не растворяется в железе и никеле даже под воздействием высоких температур, в то время как алмаз в таких же условиях вступает в химические реакции достаточно быстро. На деле это выгодно для его использования в промышленных шлифовальных инструментах.

    18. Сверхвысокомолекулярный полиэтилен высокой плотности (СВМПЭ), марка волокон «Дайнима» (Dyneema)


    Фото: Justsail

    Полиэтилен с высоким модулем упругости обладает чрезвычайно высокой износостойкостью, низким коэффициентом трения и высокой вязкостью разрушения (низкотемпературная надёжность). Сегодня его считают самым прочным волокнистым веществом в мире. Самое удивительное в этом полиэтилене то, что он легче воды и одновременно может останавливать пули! Тросы и канаты из волокон Дайнима не тонут в воде, не нуждаются в смазке и не меняют свои свойства при намокании, что очень актуально для судостроения.

    17. Титановые сплавы


    Фото: Alchemist-hp (pse-mendelejew.de)

    Титановые сплавы невероятно пластичные и демонстрируют удивительную прочность во время растяжения. Вдобавок они обладают высокой жаропрочностью и коррозионной стойкостью, что делает их крайне полезными в таких областях, как авиастроение, ракетостроение, судостроение, химическое, пищевое и транспортное машиностроение.

    16. Сплав Liquidmetal


    Фото: pixabay

    Разработанный в 2003 году в Калифорнийском техническом институте (California Institute of Technology), этот материал славится своей силой и прочностью. Название соединения ассоциируется с чем-то хрупким и жидким, но при комнатной температуре оно на самом деле необычайно твердое, износостойкое, не боится коррозии и при нагревании трансформируется, как термопласты. Основными сферами применения пока что являются изготовление часов, клюшек для гольфа и покрытий для мобильных телефонов (Vertu, iPhone).

    15. Наноцеллюлоза


    Фото: pixabay

    Наноцеллюлозу выделяют из древесного волокна, и она представляет собой новый вид деревянного материала, который прочнее даже стали! Вдобавок наноцеллюлоза еще и дешевле. Инновация имеет большой потенциал и в будущем может составить серьезную конкуренцию стеклу и углеволокну. Разработчики считают, что этот материал вскоре будет пользоваться большим спросом в производстве армейской брони, супергибких экранов, фильтров, гибких батареек, абсорбирующих аэрогелей и биотоплива.

    14. Зубы улиток вида «морское блюдечко»


    Фото: pixabay

    Ранее мы уже рассказали вам о ловчей сети паука Дарвина, которую некогда признали самым прочным биологическим материалом на планете. Однако недавнее исследование показало, что именно морского блюдечка – наиболее прочная из известных науке биологических субстанций. Да-да, эти зубки прочнее паутины Caerostris darwini. И это неудивительно, ведь крошечные морские создания питаются водорослями, растущими на поверхности суровых скал, и чтобы отделить пищу от горной породы, этим зверькам приходится потрудиться. Ученые полагают, что в будущем мы сможем использовать пример волокнистой структуры зубов морских блюдечек в машиностроительной промышленности и начнем строить автомобили, лодки и даже воздушные суда повышенной прочности, вдохновившись примером простых улиток.

    13. Мартенситно-стареющая сталь


    Фото: pixabay

    Мартенситно-стареющая сталь – это высокопрочный и высоколегированный сплав, обладающий превосходной пластичностью и вязкостью. Материал широко распространен в ракетостроении и используется для изготовления всевозможных инструментов.

    12. Осмий


    Фото: Periodictableru / www.periodictable.ru

    Осмий – невероятно плотный элемент, и благодаря своей твердости и высокой температуре плавления он с трудом поддается механической обработке. Именно поэтому осмий используют там, где долговечность и прочность ценятся больше всего. Сплавы с осмием встречаются в электрических контактах, ракетостроении, военных снарядах, хирургических имплантатах и применяются еще во многих других областях.

    11. Кевлар


    Фото: wikimedia commons

    Кевлар – это высокопрочное волокно, которое можно встретить в автомобильных шинах, тормозных колодках, кабелях, протезно-ортопедических изделиях, бронежилетах, тканях защитной одежды, судостроении и в деталях беспилотных летательных аппаратов. Материал стал практически синонимом прочности и представляет собой вид пластика с невероятно высокой прочностью и эластичностью. Предел прочности кевлара в 8 раз выше, чем у стального провода, а плавиться он начинает при температуре в 450℃.

    10. Сверхвысокомолекулярный полиэтилен высокой плотности, марка волокон «Спектра» (Spectra)


    Фото: Tomas Castelazo, www.tomascastelazo.com / Wikimedia Commons

    СВМПЭ – это по сути очень прочный пластик. Спектра, марка СВМПЭ, – это в свою очередь легкое волокно высочайшей износостойкости, в 10 раз превосходящее по этому показателю сталь. Как и кевлар, спектра используется в изготовлении бронежилетов и защитных шлемов. Наряду с СВМПЭ марки дайнимо спектра популярна в судостроении и транспортной промышленности.

    9. Графен


    Фото: pixabay

    Графен – это аллотропная модификация углерода, и его кристаллическая решетка толщиной всего в один атом настолько прочная, что она в 200 раз тверже стали. Графен с виду похож на пищевую пленку, но порвать его – практически непосильная задача. Чтобы пробить графеновый лист насквозь, вам придется воткнуть в него карандаш, на котором должен будет балансировать груз весом с целый школьный автобус. Удачи!

    8. Бумага из углеродных нанотрубок


    Фото: pixabay

    Благодаря нанотехнологиям ученым удалось сделать бумагу, которая в 50 тысяч раз тоньше человеческого волоса. Листы из углеродных нанотрубок в 10 раз легче стали, но удивительнее всего то, что по прочности они превосходят в целых 500 раз! Макроскопические пластины из нанотрубок наиболее перспективны для изготовления электродов суперконденсаторов.

    7. Металлическая микрорешетка


    Фото: pixabay

    Перед вами самый легкий в мире металл! Металлическая микрорешетка – это синтетический пористый материал, который в 100 раз легче пенопласта. Но пусть его внешний вид не вводит вас в заблуждение, ведь эти микрорешетки заодно и невероятно прочные, благодаря чему они обладают большим потенциалом для использования во всевозможных инженерных областях. Из них можно изготавливать превосходные амортизаторы и тепловые изоляторы, а удивительная способность этого металла сжиматься и возвращаться в своё первоначальное состояние позволяет использовать его для накопления энергии. Металлические микрорешетки также активно применяются в производстве различных деталей для летательных аппаратов американской компании Boeing.

    6. Углеродные нанотрубки


    Фото: User Mstroeck / en.wikipedia

    Выше мы уже рассказывали про сверхпрочные макроскопические пластины из углеродных нанотрубок. Но что же это за материал такой? По сути это свернутые в трубку графеновые плоскости (9-ый пункт). В результате получается невероятно легкий, упругий и прочный материал широкого спектра применения.

    5. Аэрографен


    Фото: wikimedia commons

    Известный также как графеновый аэрогель, этот материал чрезвычайно легкий и прочный одновременно. В новом виде геля жидкая фаза полностью заменена на газообразную, и он отличается сенсационной твердостью, жаропрочностью, низкой плотностью и низкой теплопроводностью. Невероятно, но графеновый аэрогель в 7 раз легче воздуха! Уникальное соединение способно восстанавливать свою изначальную форму даже после 90% сжатия и может впитывать такое количество масла, которое в 900 раз превышает вес используемого для абсорбции аэрографена. Возможно, в будущем этот класс материалов поможет в борьбе с такими экологическими катастрофами, как разливы нефти.

    4. Материал без названия, разработка Массачусетского технологического института (MIT)


    Фото: pixabay

    Пока вы читаете эти строки, команда ученых из MIT работает над усовершенствованием свойств графена. Исследователи заявили, что им уже удалось преобразовать двумерную структуру этого материала в трехмерную. Новая графеновая субстанция еще не получила своего названия, но уже известно, что ее плотность в 20 раз меньше, чем у стали, а ее прочность в 10 раз выше аналогичной характеристики стали.

    3. Карбин


    Фото: Smokefoot

    Хоть это и всего лишь линейные цепочки атомов углерода, карбин обладает в 2 раза более высоким пределом прочности, чем графен, и он в 3 раза жестче алмаза!

    2. Нитрид бора вюрцитной модификации


    Фото: pixabay

    Это недавно открытое природное вещество формируется во время вулканических извержений, и оно на 18% тверже алмазов. Впрочем, алмазы оно превосходит еще по целому ряду других параметров. Вюрцитный нитрид бора – одна из всего 2 натуральных субстанций, обнаруженных на Земле, которая тверже алмаза. Проблема в том, что таких нитридов в природе очень мало, и поэтому их непросто изучать или применять на практике.

    1. Лонсдейлит


    Фото: pixabay

    Известный также как алмаз гексагональный, лонсдейлит состоит из атомов углерода, но в случае данной модификации атомы располагаются несколько иначе. Как и вюрцитный нитрид бора, лонсдейлит – превосходящая по твердости алмаз природная субстанция. Причем этот удивительный минерал тверже алмаза на целых 58%! Подобно нитриду бора вюрцитной модификации, это соединение встречается крайне редко. Иногда лонсдейлит образуется во время столкновения с Землей метеоритов, в состав которых входит графит.

    Если под прочностью принято понимать способность твердых тел противостоять разрушению и сохранять форму изделия, то к сверхпрочным и прочным металлам можно отнести следующие металлы.

    Название титан было присвоено Мартином Клапротом, немецким исследователем, открывшим новый металл не по его химическим качествам, а в честь мифологических героев детей земли – титанов.

    Нахождение титана в природе стоит на 10-м месте, более всего он концентрируется в минералах. Без этого металла невозможны были бы новейшие открытия в области ракето-, корабле- и авиастроении. Титан используют во всех областях промышленности, при изготовлении медицинских имплантов и бронежилетов с пищевой промышленности и сельском хозяйстве.

    2 Место

    Светло – серый вольфрам , дословно переводится, как волчьи сливки, является самым тугоплавким металлом, поэтому он незаменим при изготовлении жароустойчивых поверхностей и изделий. Нить накаливания в обычной лампочке сделана из вольфрамовой нити.

    Тот металл используют в баллистических ракетах, при изготовлении снарядов и пуль, в гироскопических сверхскоростных роторах.

    3 место

    Тантал практически невозможно видоизменить, ведь он начинает плавиться при температуре 3015 градусов по Цельсию, а закипает при температуре кипения в 5300 градусов. Обычному человеку такую жару даже представить невозможно. Синевато — серый металл является самым незаменимым в современной медицине, из него изготовляют проволоку и листы, которыми закрывают поврежденные кости.

    Открытый в 1817 году молибден , серо-стальной металл в чистом виде практически не встречается. Поражает тугоплавкость этого металла, температура плавления которого превышает 2620 градусов. Самое большое применение молибден нашел в военной промышленности, где изготавливаются орудийные и броневые стали.

    5 место

    Авиа — и машиностроение, ядерная энергетика и космонавтика используют ниобий , очень похожий по своим свойствам на тантал металл. На ниобий практически не действуют никакие вещества, ни соли, ни кислоты, он трудно плавится, и трудно окисляется, что и сделано уникальный металл таким востребованным.

    6 место

    Самый тяжелый металл на земле иридий обладает самыми стойкими антикоррозийными свойствами, его не может расплавить даже царская водка. Добавление иридия в другие сплавы повышает их способность противостоять коррозии.

    7 место

    Бериллий является одним из редких металлов, которые добываются в земле. Его уникальные качества, такие как высокая теплопроводность и огнеупорность, сделали этот металл незаменимым при изготовлении ядерных реакторов. Бериллиевые сплавы по праву занимают ведущее место в аэрокосмической и авиационной промышленности.

    8 место

    Светло – голубой хром , который является также одним из самых прочных металлов, благодаря своим уникальным свойствам при добавлении в сплавы сталей делает их более твердыми и коррозийноустойчивыми. Хромированные детали имеют красивый внешний вид, который не видоизменяется со временем.

    9 место

    Саксонцы бережно относятся к своим легендам, имя героя одной из них Кобольда было увековечено в названии металла – кобальта . Очень часто при добывании руды искатели серо — розовый металл принимали за серебро.

    Тугоплавкий металл, как добавка, повышает жаропрочность, твердость и износоустойчивость стали. Благодаря уникальным качествам кобальт незаменим в металлорежущих станках.

    Гафний – уникальный по своим качествам металл светло-серого цвета добывается из циркониевой руды. Твердый, тугоплавкий гафний имеет уникальную особенность, дело в том, что его темплоемкостная зависимость аномальна и не подпадает не под какие законы физики.

    Гафний используют в атомной энергетике и в оптике, для укрепления различных сплавов и изготовления стекла для рентгена, без него трудно представить военное производство.

      Распространенное мнение о твердости – это алмаз или булат / дамасская сталь. Если первый минерал превосходит все простые вещества, существующие на Земле, что создала природа, то, поражающими воображение свойствами клинков из редкой стали, они обязаны мастерству кузнецов-оружейников, добавкам из других металлов. Многие технические сплавы, применяемые, например, для производства сверхтвердых резцов в машиностроительной промышленности, создания прочного, надежного инструмента, обладающего уникальными свойствами, связаны с этими добавками в привычном симбиозе железа с углеродом, кратко, традиционно называемыми сталью, – хрому, титану, ванадию, молибдену, никелю. Когда читатели спрашивают, какой самый твердый металл в мире, то в ответ на страницах сайтов на них обрушивается шквал противоречивой информации. В этом амплуа, по мнению авторов различных статей, выступает то вольфрам или хром, то иридий с осмием, то титан с танталом.

      Чтобы пробраться через дебри не всегда правильно истолкованных, пусть и точных фактов, стоит обратиться к первоисточнику – системе элементов, содержащихся как в составе , так и в остальных космических объектах, оставленной человечеству великим русским химиком и физиком Д.И. Менделеевым. Он обладал энциклопедическими знаниями, совершил много научных прорывов в знании об устройстве, составе, взаимодействии веществ, помимо знаменитой таблицы на основе открытого им фундаментального периодического закона, названной его именем.

      Ближайшие к Солнцу планеты – Меркурий, Венеру, Марс, вместе с нашей планетой, причисляют к одной – земной группе. Основания для этого есть не только у астрономов, физиков и математиков, но и у геологов с химиками. Поводом для таких выводов у последних является в том числе и то, что все они, в основном, состоят из силикатов, т.е. различных производных элемента кремния, а также многочисленных соединений металлов из таблицы Дмитрия Ивановича.

      В частности, наша планета большей частью (до 99%) состоит из десяти элементов:

      Но человека, кроме необходимого для выживания и развития железа и сплавов на его основе, всегда куда больше привлекали драгоценные, часто уважительно называемые благородными, металлы – золото и серебро, позднее – платина.

      С ней в одну, по научной классификации, принятой у химиков, платиновую группу входят рутений, родий, палладий и осмий с иридием. Все они также относятся к благородным металлам. По атомной массе их еще условно разделяют на две подгруппы:

      Последние два и представляют особый интерес для нашего околонаучного расследования на тему, кто тут самый твердый. Связано это с тем, что большая, по сравнению с другими элементами, атомная масса: 190,23 - у осмия, 192,22 – у иридия, по законам физики, подразумевает и огромную удельную плотность, а, следовательно, твердость этих металлов.

      Если плотные, тяжелые золото и свинец – это мягкие, пластичные вещества, несложные в обработке, то осмий и иридий, открытые в начале XIX века, на поверку оказались хрупкими. Здесь необходимо вспомнить, что мерило этого физического свойства – алмаз, которым можно без особых усилий нанести надпись на любом другом твердом материале природного или искусственного происхождения, также крайне хрупок, т.е. его достаточно несложно разбить. Хотя, на первый взгляд, это кажется практически невозможным.

      Кроме того, осмий и палладий обладают еще многими интересными свойствами:

      • Очень высокой тугоплавкостью.
      • Не поддаются коррозии, окислению даже при нагревании до высокой температуры.
      • Стойки к воздействию концентрированных кислот и других агрессивных соединений.

      Поэтому наравне с платиной, в том числе в виде соединений с ней, они используются при производстве катализаторов многих химических процессов, высокоточных приборов, оборудования, инструментов в медицинской, научной, военной, космической отраслях деятельности человечества.

      Именно осмий и иридий, а ученые после исследований считают, что это свойство у них примерно одинаково дано природой, являются самыми твердыми металлами в мире.

      И все бы хорошо, да не очень-то. Дело в том, что как их наличие в земной коре, так и, соответственно, мировая добыча этих весьма полезных ископаемых ничтожны:

      • 10 -11% – это их содержание в твердой оболочке планеты.
      • Суммарное количество произведенного чистого металла в год в пределах: 4 т по иридию, 1 т – осмию.
      • Цена осмия примерно равна цене золота.

      Понятно, что эти редкоземельные, дорогие металлы, невзирая на их твердость, не могут даже ограничено использоваться в качестве сырья для производства; разве что как добавки в сплавы, соединения с другими металлами для придания уникальных свойств.

      Кто за них?

      Но человек не был собой, если бы не нашел замены иридию с осмием. Раз нецелесообразно, слишком дорого использовать их, то и внимание небезуспешно было обращено к другим металлам, нашедшим свое применение в разных ситуациях, отраслях для создания новых сплавов, композитных материалов, производства оборудования, машин и механизмов как гражданского, так и военного применения:

      Хотясамый твердый металл в мире, а, вернее, целых два – иридий и осмий, показали свои уникальные свойства лишь в лабораторных условиях, а также в качестве ничтожных по процентному содержанию добавок в сплавы, других соединения для создания новых материалов, необходимых человеку, следует быть благодарными природе и за этот подарок. В то же время нет никаких сомнений, что пытливые умы талантливых ученых, гениальных изобретателей придумают новые вещества с уникальными свойствами, как это уже произошло с синтезом фуллеренов, которые оказались тверже алмаза, что уже удивительно.