• Как вырастить натуральный малахит на металлической поверхности. Способ получения синтетического малахита

    Изделия, имитирующие натуральные камни, обладают высокой прочностью, устойчивостью к химическим веществам, экологичностью, ударо- и теплостойкостью, а также прочими преимуществами. Мрамор искусственный изготавливается из бетона, гипса и полиэфирной смолы и применяется не только для облицовки домов, но и при изготовлении столешниц, лестниц, подоконников, фонтанов и многого другого.

    Чтобы изготовить искусственный мрамор своими руками, необходимо определиться с технологией его производства.

    Литьевой мрамор

    В качестве основы для этого материала используется полиэфирная смола и любой минеральный наполнитель (мраморная крошка, дробленный белый кварц и прочие мелкодисперсные компоненты). Последние позволяют производить плиты стилизованные под гранит, малахит, яшму и оникс.

    Для изготовления литьевого искусственного мрамора в домашних условиях потребуется подготовить раствор:

    1. Полимербетона. Для этого необходимо смешать 20-25% полиэфирной смолы с 75-80% толченого нейтрального минерала.
    2. Бутакрила. В этом случае вместо смолы используется АСТ-Т и бутакрил в равной пропорции, после чего к смеси добавляют 50% кварцевого песка или измельченного щебня.

    Также потребуется подготовить речной песок, пигмент, гелькоут и пластификатор. Технология изготовления искусственного мрамора из смолы включает в себя следующие этапы:

    1. Смажьте гелькоутом матрицу для будущего искусственного камня и дайте форме высохнуть.
    2. Подготовьте раствор одним из описанных выше методов.
    3. Выложите жидкий раствор в матрицу и удалите его излишки.
    4. Накройте форму пленкой, и подождите 10 часов.
    5. Вытащите готовый искусственный камень из формы и оставьте его на открытом воздухе на некоторое время.

    Отвердевший камень можно дополнительно отшлифовать или оставить без механической обработки.

    Несмотря на простоту изготовления такого искусственного сырья, литьевой способ производства мрамора отличается высокой стоимостью, поэтому имеет смысл рассмотреть и другие методы создания камней.

    Искусственный мрамор из гипса представляет собой гипсовую массу, затворенную смесью воды и клея, которая шлифуется до появления зеркального блеска. Подобная «тонировка» позволяет имитировать такие натуральные минералы, как малахит и ляпис-лазурит.

    Для производства этого искусственного мрамора не потребуется дорогостоящих материалов. Приготовить его можно следующим образом:

    1. Замесите в воде сухой гипс и столярный клей.
    2. Залейте в смесь растопленную смолу.
    3. Размешайте состав и добавьте в него пигмент.
    4. Снова размешайте смесь, пока в ней не появятся естественные вкрапления и разводы.

    Полезно! Если вы хотите получить изделие натурального цвета, то необходимо смешать 200 г белого гумилакса, 1 кг спирта (технического) и 50 г гипса. Чтобы получить кофейный оттенок используйте оранжевый гумилакс, а для создания черного камня добавьте анилиновую краску.

    1. Залейте жидкую массу в пластиковую матрицу.
    2. Удалите излишки смеси. Для этого присыпьте раствор сухим гипсом.
    3. Подождите порядка 10 часов и вытащите готовое изделие из формы.
    4. Обработайте поверхность изделия кремнекислым калием, чтобы придать готовому камню водоустойчивости.
    5. Просушите мрамор и отполируйте его с помощью мягкого фетра (также можно использовать специализированные абразивные средства, придающие готовому изделию более насыщенный оттенок).
    6. Когда поверхность камня станет практически зеркальной – искусственный мрамор будет готов.

    Такое производство искусственного мрамора и мозаики считается наиболее простым и доступным. Благодаря гипсу камни получаются очень легкими и прочными. Такие изделия успешно используются в жилых помещениях.

    Искусственный мрамор с бетонным наполнителем

    Технология производства мрамора с использованием бетона также пользуется большой популярностью, благодаря использованию экологически чистого материала и простоте изготовления изделий.

    Чтобы самостоятельно создать такой камень, выполните следующие шаги:

    1. Промажьте сухую матрицу с гладкой поверхностью влагостойким гелькоутом и дождитесь полного высыхания формы.
    2. Подготовьте бетонную смесь и добавьте в нее глину или гашенную известь.
    3. Приготовьте наполнитель. Для этого необходимо смешать 2 части речного песка, 1 часть цемента, 80% воды и добавить в состав гальку. В полученный раствор также необходимо добавить пигмент (1% от веса смеси) и замешивать состав для искусственного мрамора 30-40 секунд. Перемешивать все компоненты рекомендуется в специальном миксере.
    4. Добавьте в готовый наполнитель пигмент (добавлять его нужно неравномерно, чтобы готовое изделие получилось более реалистичным). После этого тщательно перемещайте жидкий состав.
    5. Установите матрицу в горизонтальное положение и маленькими порциями влейте в нее подготовленную массу. При этом должны заполниться все пустоты формы.
    6. Удалите излишек смеси с помощью шпателя.
    7. Накройте поверхность полиэтиленом и дождитесь полного затвердевания состава при плюсовой температуре (в зависимости от толщины камня он будет сохнуть от 24 часов до нескольких дней).
    8. Извлеките готовую искусственную плиту из матрицы и обработайте ее шлифовальной машинкой и специальной прозрачной политурой.

    Если вы решаете, как сделать искусственный мрамор самостоятельно, то предпочтение стоит отдать гипсу или бетону. Однако можно приобрести готовый материал:

    • Молотый мрамор (микрокальцит). Это сырье изготавливается из колотого мрамора. Это порошкообразное вещество минерального происхождения отличается высокой прочностью и малой химической активностью. Помимо этого материал устойчив к солнечным лучам и не впитывает влагу.
    • Жидкий мрамор. Помимо мраморной крошки в состав этого материала входят акриловые полимеры, благодаря чему такой камень получается легким и гибким. Такой мрамор можно легко резать ножом и оклеивать им стены. Наибольшей популярностью он пользуется при отделке комнат неправильной формы.

    В заключении

    Изготовление искусственного мрамора отличается исходя из используемого материала (подробнее на видео). Однако независимо от того, какое исходные сырье вы выбрали, за камнем необходимо правильно ухаживать. Например, для сохранения блеска мраморной поверхности используйте мыльный раствор (на 3 л воды необходимо добавить 1 колпачок любого моющего средства).

    Имя заявителя:
    Имя изобретателя: Протопопов Е.Н.; Протопопова В.С.; Соколов В.В.; Петров Т.Г.; Нардов А.В.
    Имя патентообладателя: Акционерное общество закрытого типа "ЖЕНАВИ"
    Адрес для переписки: 197136, Санкт-Петербург, а/я 88, Новосельцеву О.В
    Дата начала действия патента: 2000.02.09

    ОПИСАНИЕ ИЗОБРЕТЕНИЯ

    Группа изобретений относится к изготовлению синтетических ювелирно-поделочных камней для ювелирной промышленности и декоративно-прикладного искусства.

    Изобретения могут найти применение при изготовлении и реставрации интерьеров квартир и зданий, ювелирных изделий, бижутерии, сувениров, предметов декоративно-прикладного искусства.

    Малахит представляет собой минерал из класса карбонатов химического состава Cu 2 (OH) 2 или CuCO 3 ·Cu(OH) 2 , содержащий 71,9% CuO (Cu 57,4%), 19,9% CO 2 , 8,2% H 2 O и до 10% примеси в виде CaO, Fe 2 O 3 , SiO 2 . Кристаллизуется в моноклинной системе, кристаллы редки и имеют игольчатый или призматический облик. Обычны скрыто- и мелкокристаллические почковидные натечные корочки, сталактидоподобные агрегаты, ритмически полосчатые с радиально-волокнистой структурой.

    Цвет природного плотного малахита ярко-зеленый, голубовато-зеленый до темного, иногда буро-зеленого. Изменение цвета по различным зонам и слоям малахита создает на срезах и полированных плоскостях причудливый рисунок. Блеск у агрегатов шелковистый (плисовый малахит), бархатистый, тусклый, у кристаллов - алмазный, переходящий в стеклянный. Твердость по минералогической шкале Мооса 3,5 - 4,0; плотность 3900-4100 кг/м 3 .

    Rnrnrn rnrnrn rnrnrn

    В природе малахит встречается в приповерхностной зоне окисления сульфидных медных руд. Большие скопления плотного малахита очень редки и образуются путем замещения известняков сульфатными растворами меди в зоне окисления крупных месторождений меди, чем объясняется наличие в природном малахите примесей в виде CaO, Fe 2 O 3 , SiO 2 . Обычно встречается в небольшом количестве в рассеянном состоянии в виде налетов, примазок, небольших скоплений, землистых масс в смеси с другими гипергенными минералами. Лишь изредко встречаются плотные скопления малахита весом до 50 т (Медноруднянск, Нижний Тагил, Гумешевские рудники на Урале) [БСЭ, с. 276].

    Плотный, зонально-концентрический натечный малахит в виде достаточно крупных масс представляет большую ценность как красивый поделочный камень, употребляющийся для ювелирных и декоративно-художественных изделий (вставки, бусы, столешницы, вазы, облицовка колонн и др.).

    Известны крупные месторождения малахита в Заире, на юге Австралии, в Казахстане и в США. Месторождения малахита на Урале (Медноруднянские и Гумешевские рудники) в настоящее время практически полностью выработаны.

    В связи с этим возникает актуальная проблема разработки технологий получения синтетического ювелирно-поделочного малахита, аналогичного по своим показателям природному малахиту.

    Известны способы получения синтетических ювелирно-поделочных материалов, заключающиеся в кристаллизации из расплавов солей или из высокотемпературных водных растворов [Н. И. Корнилов, Ю. П. Солодова. Ювелирные камни. - М.: "Недра", 1987, с. 259-276] . Однако для данные методы непригодны, поскольку малахит разлагается при температуре 100-110 o C без плавления, а в воде практически не растворим.

    Известны способы получения монокристаллов малахита в условиях низкотемпературного гидротермального синтеза .

    Известен способ изготовления синтетического малахита в виде отдельных частиц и их соосаждения с небольшим количеством однородно рассеянного висмута, используемых в качестве ядер для последующего выращивания при повышенных температурах и последующего конвертирования в медный ацетиленовый комплекс, используемый как катализатор этилинирования [Патент США N 4107082, B 01 J 27/20, 15.08.78] .

    Известны агломераты кристаллов малахита и их получение, содержащие 1-7% (BiO) 2 CuCO 3 и 0,5-3,5% SiO 2 , имеющие средний размер 15 мкм, используемый в качестве катализаторов в химических производствах [Патент США N 4536491, В 01 J 21/20, C 04 C 33/04, 20.08.85] .

    Известен способ производства малахита или малахитоподобных изделий, включающий перемалывание природного малахита до частиц 10-100 микрон, распределение пудры в прозрачном лаке, окраске им изготавляемых предметов, высушивания и нанесения на поверхность узоров или масок, воспроизводящих текстуру природного малахита [Патент EP N 0856363, B 05 D 5/05, B 44 F 9/04, 1998-08-05].

    Данными способами не удается получить малахит, пригодный для использования в качестве ювелирно-поделочного материала.

    Rnrnrn rnrnrn rnrnrn

    Наиболее близким по технической сущности и достигаемому при использовании техническому результату (прототипом) является способ получения поликристаллического малахита, заключающийся в растворении углекислой меди в водном растворе карбоната аммония, содержащем равные мольные доли аммония и карбонат-иона с последующим выпариванием раствора при нагревании, в результате чего получается рыхлый осадок поликристаллического малахита [Чирвинский П. Н. Искусственное получение минералов в XIX столетии. - Киев. Университет, 1903-1906].

    Недостатком данного способа-прототипа, а также всех других известных способов является невозможность получения плотного материала, аналогичного по своим показателям природному малахиту и пригодного для использования в ювелирно-поделочных целях.

    В частности, недостатками способа-прототипа являются слабое срастание между отдельными кристаллами и сферолитами в образующемся поликристаллическом осадке малахита, его высокая пористость и низкая механическая прочность (после высыхания осадок легко растирается пальцами), что делает его непригодным для ювелирно-поделочных целей. Другим недостатком известного способа является однотонность получающегося осадка, имеющего бледно-зеленый цвет, в отличие от плотного поликристаллического агрегата природного малахита, ювелирно-поделочные разновидности которого характеризуются наличием чередующихся ярких светло-зеленых и темно-зеленых полос или слоев.

    Основная техническая проблема (не разрешенная до настоящего времени изобретательская задача), сдерживающая расширение применения малахита в ювелирно-поделочных и декоративно-художественных целях, заключается в том, что известные до настоящего времени способы не позволяют изготавливать синтетический плотный поликристаллический малахит аналогичный по физико-механическим и потребительским свойствам природному ювелирно-поделочного малахиту.

    Целью группы изобретений (требуемый технический результат, достигаемый при использовании изобретений) является обеспечение возможности получения синтетического плотного поликристаллического ювелирно-поделочного малахита, характеризующегося чередованием ярких светло-зеленых и темно-зеленых полос с контрастными цветовыми переходами между слоями и не отличающегося по своим физикомеханическим и ювелирно-художественным свойствам от лучших сортов ювелирно-поделочных разновидностей природного малахита.

    Поставленная цель и требуемый технический результат достигаются тем, что синтетический ювелирно-поделочный малахит, представляющий собой поликристаллический агрегат, содержащий основную углекислую медь Cu 2 (CO 3 ](OH) 2 и примеси, согласно изобретению синтетический малахит содержит основную углекислую медь и примеси при следующем соотношении компонентов, вес.%:
    Cu 2 (OH) 2 - 99,99-99,5
    Примеси - 0,01 - 0,50
    При этом синтетический малахит в качестве примеси содержит Fe 2 O 3 и Na 2 O, плотность синтетического малахита составляет 3,9 - 4,1 г/см 3 , твердость по Моосу 4,0, микротвердость 216 - 390 кг/мм 2 , максимум спектра отражения синтетического малахита 490 - 525 нм, износостойкость синтетического малахита по сравнению с изностойкостью природного малахита 105-150%, а полируемость синтетического малахита по отношению к полируемости природного малахита составляет 105 - 150%.

    При этом синтетический малахит содержит чередующиеся светло-зеленые и темно-зеленые слои, а его поверхность в отраженном свете проявляет "плисовый" (муаровый) эффект.

    Характерной особенностью синтетического малахита является его получение путем растворения основной углекислой меди в водном растворе карбоната аммония, содержащем избыточное мольное содержание аммиака по отношению к мольному содержанию углекислоты, и последующего выпаривания раствора при нагревании с образованием поликристаллического агрегата синтетического, вследствие чего межкристаллическое пространство синтетического малахита содержит остаточный ион аммония.

    Поставленная цель и требуемый технический результат достигаются также тем, что по способу получения синтетического ювелирно-поделочного малахита, включающему растворение основной углекислой меди в водном растворе карбоната аммония и последующее выпаривание полученного при этом раствора с образованием поликристаллического агрегата синтетического малахита, согласно изобретению растворение основной углекислой меди в водном растворе карбоната аммония проводят при избыточном мольном содержании аммиака в 1,5-8 раз по отношению к мольному содержанию углекислоты.

    При этом выпаривание раствора основной углекислой меди в водном растворе карбоната аммония с избытком аммиака проводят при температуре 40 - 95 o C, преимущественно при температуре 60 - 80 o C, причем выпаривание раствора основной углекислой меди в водном растворе карбоната аммония с избытком аммиака проводят с переменной скоростью с обеспечением возможности получения синтетического малахита с чередующимися светло-зелеными и темно-зелеными слоями, а для обеспечения возможности получения контрастных цветовых переходов между слоями синтетического малахита при переходе к выращиванию очередного слоя скорость выпаривания раствора основной углекислой меди в водном растворе карбоната аммония изменяют с избытком аммиака не менее чем в 1,2 раза по сравнению со скоростью выпаривания при кристаллизации предыдущего слоя синтетического малахита.

    Подтверждение эффективности изобретений, возможность промышленной реализации изобретений и возможность практического достижения требуемого технического результата подтверждаются приведенными ниже примерами реализации изобретений.

    При изготовлении синтетического ювелирно-поделочного малахита по изобретению используют порошкообразную основную углекислую медь Cu 2 (OH) 2 CO 3 по ГОСТ 8927-79, карбонат аммония (NH 4) 2 CO 3 по ГОСТ 3770-78 и 25%-ный водный раствор аммиака NH 4 OH по ГОСТ 3760-79.

    Пример 1
    Основную углекислую медь Cu 2 (OH) 2 CO 3 растворяли в растворе карбоната аммония (NH 4) 2 CO 3 , содержащем мольный избыток аммиака NH 3 по отношению к мольному содержанию углекислоты CO 2 . Мольное содержание аммиака по отношению к мольному содержанию углекислоты для условий данного примера 1,5. Смесь перемешивали до полного растворения основной углекислой меди. Выпаривание раствора проводили при температуре 40 o C. Для получения чередующихся светло- и темно-зеленых полос процесс выпаривания проводили с переменной скоростью, варьируемой в диапазоне изменения в 1,2 раз по отношению к скорости выпаривания на предыдущем этапе получения светлой или темной полосы (слоя). Процесс выпаривания продолжали до прекращения выделения паров аммиака. Прекращение выделения паров аммиака свидетельствует о полном разложении меднокарбонатноаммиачных комплексов, образующихся в процессе растворения основной углекислой меди в растворе карбоната аммония, что приводит к образованию плотного поликристаллического агрегата основной углекислой меди, представляющего собой ювелирно-поделочный синтетический малахит. После окончания процесса выпарки оставшуюся водную часть отделяли от синтетического малахита и проводили его анализ на соответствие параметрам эталонного образца природного малахита, представленного в базе данных ICDD, N 41-1390.

    Показатели полученного по Примеру 1 синтетического малахита представлены в Таблице 1.

    Rnrnrn rnrnrn rnrnrn

    Пример 2
    Условия примера 2 аналогичны условиям Примера 1, но отношение мольного содержания аммиака к мольному содержанию углекислоты для условий данного примера составило 4,0.

    Показатели полученного по Примеру 2 синтетического малахита представлены в Таблице 1.

    Пример 3
    Условия Примера 3 аналогичны условиям Примера 1, но отношение мольного содержания аммиака к мольному содержанию углекислоты для условий данного примера составило 8,0.

    Показатели полученного по Примеру 3 синтетического малахита представлены в Таблице 1.

    Пример 4
    Условия Примера 3 аналогичны условиям Примера 1, но отношение мольного содержания аммиака к мольному содержанию углекислоты для условий данного примера составило 4, а выпаривание проводили при температуре 60 o C.

    Показатели полученного по Примеру 4 синтетического малахита представлены в Таблице 1.

    Пример 5
    Условия Примера 5 аналогичны условиям Примеров 1 и 4, но выпаривание проводили при температуре 80 o C.

    Показатели полученного по Примеру 5 синтетического малахита представлены в Таблице 1.

    Пример 6
    Условия Примера 6 аналогичны условиям Примеров 1 и 4, но выпаривание проводили при температуре 95 o C.

    Показатели полученного по Примеру 6 синтетического малахита представлены в Таблице 1.

    Кроме этого, проведенные рентгенодифрактометрические исследования показали идентичность рентгенограмм природного и синтетического малахита.

    Практически все оптические константы синтетического малахита аналогичны оптическим константам природного малахита.

    Также как и природный малахит, синтетический малахит в восстановительном пламени плавится и дает королек меди. Смоченный HCl, синтетический малахит окрашивает пламя в голубой цвет. При нагревании в стеклянной трубке синтетический малахит выделяет воду и чернеет, в соляной кислоте растворяется с шипением.

    Таким образом, изобретения позволяют получать синтетический малахит с физико-химическими свойствами, характерными для природного малахита, но синтетический малахит отличается от природного повышенной микротвердостью, повышенной износостойкостью и лучшей полируемостью, что объясняется более низким содержанием примесей и иным качественным составом примесей.

    В целом, учитывая новизну и неочевидность изобретений, существенность всех общих и частных признаков изобретений, показанную в разделе "Сущность изобретения", а также показанную в разделе "Примеры реализации изобретений" осуществимость изобретения, уверенное решение поставленных задач и получение нового технического результата, заявленная группа изобретений, по нашему мнению, удовлетворяет всем требованиям охраноспособности, предъявляемым к изобретениям.

    Проведенный анализ показывает также, что все общие и частные признаки изобретений являются существенными, так как каждый из них необходим, а все вместе они не только достаточны для достижения цели изобретений, но и позволяют реализовать группу изобретений промышленным способом.

    Кроме этого, анализ совокупности существенных признаков группы изобретений и достигаемого при их использовании технического результата показывает наличие единого изобретательского замысла, тесную и неразрывную связь между изобретениями и предназначенность способа непосредственно для получения синтетического ювелирно-поделочного малахита, что позволяет объединить два изобретения в одной заявке.

    ФОРМУЛА ИЗОБРЕТЕНИЯ

    1. Синтетический ювелирно-поделочный малахит, представляющий собой поликристаллический агрегат, содержащий основную углекислую медь Cu 2 (OH) 2 и примеси, отличающийся тем, что синтетический малахит содержит основную углекислую медь и примеси при следующем соотношении компонентов, вес.%:
    Cu 2 (OH) 2 - 99,99 - 99,5
    Примеси - 0,01 - 0,50

    2. Синтетический малахит по п.1, отличающийся тем, что примеси синтетического малахита содержат Fe 2 O 3 и Na 2 O.

    3. Синтетический малахит по п.1 или 2, отличающийся тем, что плотность синтетического малахита составляет 3,9 - 4,1 г/см 3 .

    4. Синтетический малахит по любому из пп.1 - 3, отличающийся тем, что твердость синтетического малахита по Моосу составляет 4.

    5. Синтетический малахит по любому из пп.1 - 4, отличающийся тем, что микротвердость синтетического малахита составляет 216 - 390 кг/мм 2 .

    6. Синтетический малахит по любому из пп.1 - 5, отличающийся тем, что максимум спектра отражения синтетического малахита составляет 490 - 525 нм.

    7. Синтетический малахит по любому из пп.1 - 6, отличающийся тем, что износостойкость синтетического малахита по сравнению с износостойкостью природного малахита составляет 105 - 150%.

    8. Синтетический малахит по любому из пп.1 - 7, отличающийся тем, что полируемость синтетического малахита по отношению к полируемости природного малахита составляет 105 - 150%.

    9. Синтетический малахит по любому из пп.1 - 8, отличающийся тем, что синтетический малахит содержит чередующиеся светло- и темнозеленые слои.

    10. Синтетический малахит по любому из пп.1 - 9, отличающийся тем, что поверхность синтетического малахита в отраженном свете проявляет плисовый муаровый эффект.

    11. Синтетический малахит по любому из пп.1 - 10, отличающийся тем, что он получен путем растворения основной углекислой меди в водном растворе карбоната аммония, содержащем избыточное мольное количество аммиака по отношению к мольному содержанию углекислоты, и последующего выпаривания полученного при этом раствора при нагревании с образованием поликристаллического агрегата синтетического малахита.

    12. Синтетический малахит по любому из пп.1 - 11, отличающийся тем, что межкристаллическое пространство синтетического малахита содержит остаточный ион аммония.

    13. Способ получения синтетического ювелирно-поделочного малахита, включающий растворение основной углекислой меди в водном растворе карбоната аммония и последующее выпаривание раствора с образованием поликристаллического агрегата синтетического малахита, отличающийся тем, что растворение основной углекислой меди в водном растворе карбоната аммония проводят при избыточном мольном содержании аммиака по отношению к мольному содержанию углекислоты.

    14. Способ по п.13, отличающийся тем, что растворение основной углекислой меди в водном растворе карбоната аммония проводят при избыточном мольном содержании аммиака в 1,5 - 8 раз по отношению к мольному содержанию углекислоты.

    15. Способ по любому из пп.13 - 14, отличающийся тем, что выпаривание раствора основной углекислой меди в водном растворе карбоната аммония проводят при 40 - 95 o С.

    16. Способ по п.15, отличающийся тем, что выпаривание раствора основной углекислой меди в водном растворе карбоната аммония проводят преимущественно при 60 - 80 o С.

    17. Способ по любому из пп.13 - 16, отличающийся тем, что выпаривание раствора основной углекислой меди в водном растворе карбоната аммония проводят с переменной скоростью с возможностью получения синтетического малахита с чередующимися светло- и темнозелеными слоями.

    18. Способ по п.17, отличающийся тем, что для обеспечения возможности получения контрастных цветовых переходов между слоями синтетического малахита при переходе к выращиванию очередного слоя скорость выпаривания раствора основной углекислой меди в водном растворе карбоната аммония изменяют не менее чем в 1,2 раза по сравнению со скоростью выпаривания при кристаллизации предыдущего слоя синтетического малахита.

    19. Способ по любому из пп.13 - 18, отличающийся тем, что получают синтетический малахит по любому из пп.1 - 12.

    Изобретение относится к изготовлению искусственно выращенных камней и может быть использовано в ювелирной промышленности и ювелирно-прикладном искусстве. Способ получения синтетического малахита заключается в том, что готовят исходный рабочий раствор путем растворения основной углекислой меди в растворе карбоната аммония, содержащем избыточную мольную концентрацию аммиака по отношению к мольному содержанию углекислоты. Объем исходного рабочего раствора разделяют на две части перегородкой, проницаемой для жидкой и газовой фазы, причем в верхней части находится зона растворения, куда помещают твердую основную углекислую медь, а в нижней части находится зона кристаллизации, куда предварительно устанавливают металлические или полимерные элементы будущих изделий и где осуществляют последующее выпаривание раствора при температуре 40-95°С. После выпаривания конденсируют образующуюся парогазовую смесь, а полученный конденсат в виде водного раствора карбоната аммония возвращают в зону растворения для осаждения из упаренного раствора кристаллов синтетического малахита на поверхности металлических или полимерных элементов, установленных в зоне кристаллизации. В зоне растворения поддерживают температуру на 20-30°С ниже, чем в зоне кристаллизации. Концентрацию меди (II) в исходном рабочем растворе устанавливают равной 45-60 г/л. Техническим результатом изобретения является улучшение художественно-декоративных характеристик синтетического малахита, заключающихся в получении малахита с любыми разновидностями текстуры, прежде всего, почковидной и плисовой текстуры с разнообразной цветовой гаммой материала и узором, заранее задаваемыми художниками-дизайнерами для изготовления будущих изделий. 1 з.п. ф-лы, 1 ил., 1 табл.

    Изобретение относится к изготовлению искусственно выращенных камней и может быть использовано в ювелирной промышленности и ювелирно-прикладном искусстве.

    Для получения драгоценных и полудрагоценных искусственных минералов, в том числе и для искусственного малахита, широко известен гидротермальный способ выращивания ювелирных кристаллов, реализующий синтез минералов и солей из водных растворов при высоких температурах и давлениях (B.C.Балицкий, Е.Е.Лисицына. «Синтетические аналоги и имитации природных драгоценных камней», «Недра», 1981, с.10-26).

    Указанный метод основан на перекристаллизации исходной шихты, представленной, например, солью основной углекислой меди путем ее растворения в относительно более горячей зоне с последующим конвективным переносом растворенных компонентов в относительно менее нагретую зону, где происходит кристаллизация и рост кристаллов соответствующего материала. Выращивание кристаллов по этому методу осуществляют в автоклавах высокого давления из нержавеющих сталей и сплавов, позволяющих проводить процесс при температурах до 500°С и давлениях (десятки и сотни мегапаскалей).

    Гидротермальный синтез малахита не получил широкого применения из-за необходимости сложной дорогостоящей аппаратуры, взаимодействия рабочих растворов с внутренними поверхностями автоклавов и практически не регулируемого процесса кристаллизации.

    Более экономически выгодным способом синтеза малахита является его кристаллизация и выращивание из водных растворов солей меди путем медленного испарения исходных растворов и последующей кристаллизации малахита из пересыщенного раствора в изотермических условиях. При этом температура процесса не превышает 100°С, а давление - 1 атм.

    Способ получения малахита по патенту RU 2225360 включает выпаривание раствора основной углекислой меди с добавлением основного углекислого цинка в растворе карбоната аммония. При этом выпаривание основной углекислой меди и основного углекислого цинка в водном растворе карбоната аммония проводят с конденсацией образующейся при выпаривании парогазовой смеси NH 3 , СО 2 и H 2 O и получением водного раствора карбоната аммония, который используют для растворения основной углекислой меди и получения подаваемого на выпаривание раствора основной углекислой меди в водном растворе карбоната аммония. Получаемый по этому методу поликристаллический малахит содержит примеси Zn 2+ в количестве от 0,2 до 0,9%, поэтому не является полным химическим аналогом природного малахита. Кроме того, недостатком способа является получение малахита с ограниченными разновидностями текстуры, которая является полосчатой и наименее интересной для изготовления ювелирных изделий.

    Наиболее близким к заявляемому по технической сущности и достигаемому результату является способ получения синтетического ювелирно-поделочного малахита по патенту RU 2159214, заключающийся в следующем.

    Основную углекислую медь растворяют в водном растворе карбоната аммония при избыточном мольном содержании аммиака в 1,5-8 раз по отношению к мольному содержанию углекислоты в растворе. Полученный раствор выпаривают при температуре 40-95°С с переменной скоростью. При этом в процессе кристаллизации образуется поликристаллический агрегат синтетического малахита, химический состав которого и физико-химические свойства полностью соответствует его природному аналогу, а износостойкость и полируемость на 5-50% выше, чем у природного минерала.

    Недостатком известного способа являются невысокие декоративно-художественные характеристики получающегося малахита, в частности ограниченные возможности получения заданной текстуры и цветовой гаммы. Так, основная текстура поверхности синтетического малахита, получаемого по данному способу, является преимущественно полосчатой, характеризуемой чередованием светло- и темно-зеленых слоев, что характерно для ювелирно-поделочного малахита из Заира. В то же время, по данному способу не получается малахит других разновидностей и текстуры природного малахита, таких как почковидная и плисовая, обладающие более высокими художественно-декоративными качествами, характерными, например, для знаменитого уральского бирюзового малахита.

    Другим недостатком данного способа является относительно высокая затратность его использования при последующем изготовлении из синтетического малахита ювелирно-поделочных изделий. Это связано с тем, что получающийся по данному способу малахит имеет преимущественно форму монолитных кусков (камней), которые для изготовления изделий по традиционной мозаичной технологии требуют применения трудоемких операций механической обработки этих кусков, включающей их распиловку на пластинки, шлифовку и полировку поверхности этих пластин с последующим использованием их в качестве мозаичных элементов, приклеиваемых к поверхности формы самого изделия.

    Одним из основных недостатков изложенного способа является невозможность управления процессом синтеза с точки зрения создания заданного рисунка (узора) на поверхности малахита, характерного для природного материала наилучших сортов.

    Техническим результатом заявленного изобретения является удешевление изготовления ювелирно-поделочных изделий из синтетического малахита, а также улучшение художественно-декоративных характеристик синтетического малахита, заключающихся в получении малахита с любыми разновидностями текстуры, прежде всего почковидной и плисовой текстуры с разнообразной цветовой гаммой материала и рисунком (узором), заранее задаваемыми художниками-дизайнерами для изготовления будущих изделий.

    Технический результат достигается за счет того, что в способе получения ювелирно-поделочного малахита, включающем подготовку исходного рабочего раствора путем растворения основной углекислой меди в растворе карбоната аммония, содержащем избыточную мольную концентрацию аммиака по отношению к мольному содержанию углекислоты, объем исходного рабочего раствора разделяют перегородкой, проницаемой для жидкой и газовой фазы, на две части, верхнюю - зону растворения и нижнюю - зону кристаллизации. При этом в зону растворения помещают в открытой емкости твердую основную углекислую медь, а в зону кристаллизации предварительно устанавливают металлические или полимерные элементы будущих изделий и осуществляют последующее выпаривание раствора при температуре 40-95°С. После чего осуществляют конденсацию образующейся парогазовой смеси NH 3 , СО 2 и Н 2 О, а полученный конденсат в виде водного раствора карбоната аммония возвращают в зону растворения для осаждения из упаренного раствора кристаллов синтетического малахита на поверхности металлических или полимерных элементов, установленных в зоне кристаллизации. Температуру в зоне растворения поддерживают на 20-30°С ниже, чем в зоне кристаллизации.

    В предпочтительном варианте реализации способа концентрацию меди (II) в исходном рабочем растворе устанавливают равной 45-60 г/л.

    Благодаря осуществлению вышеизложенного способа достигается решение задачи управляемого синтеза малахита с заданными физико-химическими и художественно-декоративными характеристиками, в частности с требуемой почковидной и плисовой текстурами поверхности малахита и с получением непосредственно в процессе кристаллизации полуфабрикатов будущих изделий, доводка которых до товарных изделий осуществляется без применения распиловки с помощью простых операций шлифовки и полировки поверхности полуфабрикатов, что значительно экономичнее традиционного мозаичного способа изготовления изделий из малахита.

    Способ осуществили в аппарате-кристаллизаторе, принципиальная схема которого представлена на Фиг.1. Аппарат представлял собой герметичный цилиндрический сосуд, разделенный двумя перфорированными и одной сплошной перегородкой на 4 камеры: камеру 1 конденсации, камеру 2 растворения, камеру 3 кристаллизации и камеру 4 нагрева аппарата.

    Камера 2 растворения представляла собой цилиндрическую емкость, на перфорированное дно которой, являющееся перегородкой между камерой 2 и камерой 3 кристаллизации, устанавливали открытую емкость, загруженную твердой солью основной углекислой меди. В центре дна камеры выполнено отверстие, к которому приварена трубка, проходящая вверх по высоте камеры. По этой трубке в процессе работы аппарата проходила парогазовая смесь NH 3 , CO 2 и H 2 O из камеры 3 кристаллизации в камеру 1 конденсации и обратный сток из последней конденсата.

    При подготовке аппарата к работе в камеру 2 растворения залили исходный рабочий раствор, который готовили растворением соли основной углекислой меди марки «ХЧ» в растворе карбоната аммония с добавлением 25%-ного раствора аммиака для обеспечения избыточной аммиачности, при этом исходный рабочий раствор имел следующий состав, г/л: Cu (II) - 50, сумма СО 3   2- и НСО 3   - - 50, NH 4   + - 45.

    В данном растворе избыточное мольное содержание аммиака примерно в 3 раза превышает мольное содержание углекислоты.

    Камера 3 кристаллизации, расположенная ниже камеры 2 растворения, также представляет собой цилиндрическую емкость с герметичным плоским дном (перегородкой между этой камерой и камерой 4 нагрева и верхней перегородкой между этой камерой и камерой растворения, выполненной с отверстиями для прохода паров и стекающего конденсата после его контактирования с солью меди в камере 2 растворения. При подготовке аппарата к работе (синтезу малахита) в камеру 3 кристаллизации предварительно устанавливали алюминиевые пластины размером 100×50×20 мм, полимерные пластины из полипропилена с такими же размерами и изогнутые пластины из указанных материалов для придания им сферической поверхности. Указанные пластины являются элементом будущих мозаичных изделий (декоративных панно). После установки пластин в камеру кристаллизации заливали исходный рабочий раствор вышеприведенного состава для камеры 2 растворения.

    Расположенная над камерой 2 растворения камера 1 конденсации представляет собой эллиптическую крышку аппарата, к внутренней поверхности которой приварены обращенные вниз под углом конденсаторные пластины в форме сегментов. Назначением пластин является конденсация попадающих на них из камер растворения и кристаллизации парогазовой смеси NH 3 , СО 2 и Н 2 О с образованием водного раствора карбоната аммония, возвращаемого в процесс. Для регулирования температуры в камере, а также в камере растворения (2), к крышке камеры конденсации приваривается водяная рубашка, обеспечивающая проток охлаждающей воды через внешнюю поверхность крышки.

    Необходимый температурный режим в камерах аппарата обеспечивается за счет трубчатых электронагревателей (тэнов), которые устанавливаются в самой нижней камере - камере нагрева (4). Верхняя плоская часть этой камеры, являющаяся перегородкой, отделяющей камеру нагрева от камеры кристаллизации, выполнена из хорошо проводящего тепло материала, а нижняя часть, являющаяся днищем аппарата в целом, - из материала, плохо проводящего тепло.

    Описанный выше аппарат-кристаллизатор, выполненный из нержавеющей стали, имел следующие характеристики:

    Принцип работы описанного выше аппарата, использованного в примере исполнения предлагаемого способа, заключается в следующем.

    Залитый в камеры (3 и 2) кристаллизации и растворения исходный аммиачно-карбонатный раствор меди нагревали до температуры, обеспечивающей достаточно высокую упругость паров. Образующаяся при этом (в процессе выпаривания) парогазовая смесь NH 3 , CO 2 и Н 2 О (преимущественно в камере кристаллизации, имеющей более высокую температуру в аппарате), поднимаясь вверх, попадала в камеру конденсации (1), где на конденсаторных пластинах образуется жидкая фаза (водный раствор карбоната аммония), стекающая вниз аппарата. Часть конденсата через трубку в камере растворения (2) стекала сразу же в камеру кристаллизации, а другая его часть через отверстия в перегородке стекала в камеру растворения (2), где попадала в емкость с находящейся в ней твердой солью основной углекислой меди, которая частично растворялась в конденсате и уже в виде медьсодержащего раствора стекала в ту же камеру кристаллизации (3). В результате осуществления в процессе синтеза многократного цикла «испарение-конденсация-растворение», происходящих в аппарате при поддержании постоянных значений температур в камерах аппарата, происходит увеличение концентрации меди в растворе камеры кристаллизации. При достижении определенной концентрации меди в этом растворе происходит выделение осадка малахита на поверхности металлической или полимерной матрицы, заранее установленной в камере кристаллизации (3), и рост кристаллов малахита до достижения заданнной толщины, определяемой временем кристаллизации.

    Предложенный способ в описанном выше аппарате-кристаллизаторе выполняли в следующей последовательности:

    Вначале готовили исходный рабочий раствор основной углекислой меди ее растворением в растворе карбоната аммония с избытком аммиака, как это описано выше.

    Рабочий раствор, содержащий, г/л: Cu (II) - 50, сумма СО 3   2- и НСО 3   - - 50, NH 4   + - 45 заливали через штуцера в камеры растворения (2) в объеме 3,5 л и камеры кристаллизации (3) в объеме 5,5 л.

    Предварительно в камеру растворения устанавливали открытую чашу с насыпанной в нее солью основной углекислой меди марки «ХЧ» в количестве 0,5 кг, а в камеру кристаллизации - металлические и полимерные пластины, как это описано выше.

    После подачи в аппарат необходимого объема исходного рабочего раствора его герметизировали, перекрывая все входные и выходные патрубки и включали электронагрев в камере нагрева (4). Постепенно в течение 2-3 часов поднимали температуру со скоростью 2-5°С в час до заданных значений температур: в камере кристаллизации до T=70°С и в камере растворения до Т=45°С, при этом температура в камере растворения была ниже на 25°С, чем в камере кристаллизации. Для обеспечения более низкой температуры в камере растворения, чем в камере кристаллизации, включали подачу охлажденной воды с Т=20-30°С в рубашку камеры конденсации. При этом температура в камере конденсации устанавливалась на уровне 35-40°С. Указанные значения температур в камерах аппарата поддерживали постоянными в течение всего процесса синтеза, время которого составляло 60 суток. Длительность процесса определяли заранее на основании предварительных опытов, исходя из условия достижения толщины выращиваемого осадка малахита на пластинах, равной 40-70 мм.

    После завершения процесса синтеза из охлажденного аппарата осуществляли слив отработанного раствора через сливные патрубки, аппарат разбирали и извлекали из него образцы пластин с выращенным на них осадком малахита. Образцы промывали проточной водой, высушивали при температуре 50°С и подвергали механической обработке, включающей шлифовку и полировку поверхности пластин с получением шлифов образцов для определения физико-химических свойств и текстуры поверхности.

    Определение соответствия образцов полученного синтетического малахита образцам природного минерала осуществляли с использованием стандартных методов диагностики минералов путем определения и анализа свойств, характерных для данного минерала, которые приводятся в специальных таблицах-определителях [Г.Н.Вертушкин, В.Н.Авдонин. Таблицы определения минералов по физическим и химическим свойствам. Справочник, 2-е изд. перераб. и доп., М., «Недра», 1982, с.402].

    Результаты осуществления примера исполнения предлагаемого способа сведены в табл.1, в которой также приведены результаты синтеза в интервалах заявленных признаков способа.

    Как следует из данных, приведенных в табл.1, наилучшие результаты по качеству синтетического малахита, полученного по предлагаемому способу, наблюдаются, когда содержание меди (II) в исходном рабочем растворе находится в пределах 45-60 г/л и разность температур между температурами в зоне растворения и в зоне кристаллизации находится в пределах 20-30°С (опыты №2, 3, 4, 7, 8). В указанных диапазонах концентрации меди и разности температур обеспечивается получение синтетического малахита, химические свойства которого (содержание CuO в веществе), физические свойства (плотность и твердость) и оптические свойства (показатель преломления) практически не отличаются от аналогичных показателей природного малахита. При этом текстура выращенного в этих условиях синтетического малахита имеет почковидный натечный характер с радиально-лучистым и зонально-концентрическими узорами рисунка поверхности и насыщенной цветовой гаммой от светло-, темно-зеленого до ярко-зеленого цвета, что в художественно-декоративном отношении характеризует малахит как ювелирно-поделочный материал самых высоких сортов.

    За пределами указанных оптимальных значений концентрации меди в исходном рабочем растворе (опыты №1 и 5 табл.1) и разности температур между зонами растворения и кристаллизации (опыты №6 и 9 табл.1) происходит ухудшение показателей синтезированного малахита, в частности наблюдается несоответствие природному минералу содержания CuO в веществе и физических свойств, а главное, не достигается получение наиболее выразительной почковидной текстуры как у лучших разновидностей природного материала, в частности в указанных опытах наблюдается только полосчатая текстура.

    В опытах №1-9 приведены результаты синтеза при использовании металлических элементов в зоне кристаллизации, а в опыте 10 - элемента из полипропилена.

    В опытах 1, 5, 6, 9 синтетический малахит имел полосчатую текстуру; в опытах 2-4, 8 и 10 текстура была почковидной; в опыте 7 - плисовая. Цвет варьировался от светло- до яркого темно-зеленого.

    Таблица 1
    Показатели синтетического малахита по предлагаемому способу в сравнении с показателями природного малахита
    № п/п Состав исходного сырья Температура в камерах, °С Содержание CuO,% Плотность, г/см 3 Твердость по шкале Мооса Показатели преломления
    Cu +2 NH 4   + Σ CO 3   2- +НСО 3   - Кристаллизации Растворения ΔТ Синт. Природ. Синт. Природ. Синт. Природ. Синтетический Природный
    Ng Nm Np Ng Nm Np
    1 35 45 50 70 45 25 71,76 71,93 3,8 3,9-4,1 3,4 3,5-4,0 1,856 1,80 1,65 1,885 1,810 1,670
    2 45 45 50 70 45 25 71,90 71,93 3,9 3,9-4,1 3,55 3,5-4,0 1,878 1,812 1,672 1,885 1,810 1,670
    3 50 45 50 70 45 25 71,95 71,93 4,0 3,9-4,1 3,8 3,5-4,0 1,892 1,809 1,668 1,885 1,810 1,670
    4 60 45 50 70 45 25 72,0 71,93 3,95 3,9-4,1 3,9 3,5-4,0 1,884 1,807 1,668 1,885 1,810 1,670
    5 65 45 50 70 45 25 72,05 71,93 4,1 3,9-4,1 3,45 3,5-4,0 1,871 1,802 1,661 1,885 1,810 1,670
    6 50 45 50 75 45 35 71,84 71,93 3,82 3,9-4,1 3,5 3,5-4,0 1,873 1,813 1,664 1,885 1,810 1,670
    7 50 45 50 75 45 30 71,92 71,93 3,95 3,9-4,1 3,9 3,5-4,0 1,890 1,815 1,673 1,885 1,810 1,670
    8 50 45 50 70 50 20 71,90 71,93 4,0 3,9-4,1 4,0 3,5-4,0 1,886 1,810 1,671 1,885 1,810 1,670
    9 50 45 50 70 55 15 71,77 71,93 4,15 3,9-4,1 3,45 3,5-4,0 1,870 1,796 1,665 1,885 1,810 1,670
    10 50 45 50 70 45 25 71,90 71,93 3,95 3,9-4,1 3,8 3,5-4,0 1,890 1,814 1,695 1,885 1,810 1,670

    1. Способ получения синтетического малахита, заключающийся в том, что готовят исходный рабочий раствор, путем растворения основной углекислой меди в растворе карбоната аммония, содержащем избыточную мольную концентрацию аммиака по отношению к мольному содержанию углекислоты, объем исходного рабочего раствора разделяют перегородкой, проницаемой для жидкой и газовой фазы, на две части, причем в верхней части находится зона растворения, куда дополнительно вносят в открытой емкости твердую основную углекислую медь, а в нижней части находится зона кристаллизации, куда предварительно устанавливают металлические или полимерные элементы будущих изделий и где осуществляют последующее выпаривание раствора при температуре 40-95°С, после чего конденсируют образующуюся парогазовую смесь NH 3 , СО 2 и Н 2 О, а полученный конденсат в виде водного раствора карбоната аммония возвращают в зону растворения для осаждения из упаренного раствора кристаллов синтетического малахита на поверхности металлических или полимерных элементов, установленных в зоне кристаллизации, при этом в зоне растворения поддерживают температуру на 20-30°С ниже, чем в зоне кристаллизации.

    Имитация камня малахит. Мастер-класс по декупажу.

    Рада Вас приветствовать! Второй мини урок из мини курас " Имитация каменной поверхности".

    Приглашаю в малахитовую сказку!

    Представляю вашему вниманию часть мини урока.

    Мечта есть и есть огромное желание творить

    и создавать чудеса своими руками.

    Мастерицы подготовились основательно, все должно быть под рукой.

    Необходимые материалы :

    • Заготовка разделочной доски (можно выбрать шкатулку, банку и т.д.)
    • Акриловые краски: белая, черная, зеленая краска 3 оттенков.
    • Вода в стакане.
    • Замедлитель высыхания акриловой краски.
    • Кисти, губка или поролон, картон, листы бумаги.
    • Акриловый лак.
    • Наждачная бумага № 400, 800, 2000.
    • Декупажная карта с мотивом.
    • Отличное настроение и желание творить.

    Рукодельницы с домашними делами управились, детей и мужа накормили, в доме убрались и принялись волшебством заниматься. Уверена, Вы тоже все приготовили и начнем чудеса делать. Из простой фанерной заготовки сделаем ключницу.

    Подготовим вначале заготовку к работе. Вспомнили, как дерево надо подготовить к работе? Молодцы!!!

    Аккуратно смешиваем мастихином белую и зеленую краску. Это базовый слой нашего фона.

    Легкими движениями с помощью поролона покрывает тонким слоем всю заготовку. Даем высохнуть, обрабатываем ее наждачной бумагой и покрываем лаком.

    Приготовим зеленую более темную краску и целлофановый пакет. Мазками нанесли краску на поверхность и прижали скомканным пакетом один раз.

    Так же мазками наносим краску на уже готовые пятна.

    Вот такой результат получился у нашей рукодельницы. Если понравился, то фиксируем лаком.

    Берем картон небольшого размера и обрываем край. Теперь главное работать плавно и быстро. Смешиваем краски с замедлителем высыхания. Получилось 4 цвета.

    Накладываем мазки, чередуя светлые и темные тона зелени. Прикладываем к краю неровную сторону картонки, слегка прижимая только низ, проводим в одном направлении полукруг.

    Вот что должно получиться в итоге. Результат вас устроил, тогда фиксируем лаком.

    После полного высыхания наносим сильно разбавленную смесь светло-зеленой с черной. В некоторых местах сотрите краску салфеткой, чтобы четко проступил основной рисунок.

    Осталось приклеить маленькую заготовку с изображением, приделать крючок, оформить стикерами или контурами.

    У мастерицы получился замечательный камень. И у вас получится имитировать малахит. Главное желание творить и у Вас получится свой неповторимый узор.

    Кому понравилась эта сказка о малахите приглашаю вас подписаться на

    Курс «Имитация каменной поверхности» 8 мини уроков.

    Вы узнаете о тонкостях и секретах разных техник имитации камня, используя простые и доступные материалы.

    Давайте вместе с вами создадим неповторимые предметы декора.