• Петля фаза ноль сопротивление заземления. Измерение сопротивления петли фаза-нуль

    Кратко, сопротивление петли фаза-ноль измеряют для определения поведения защитных автоматов при возникновении короткого замыкания. Короткое замыкание возникает при механическом повреждении кабеля или разрушении изоляции кабеля в результате старения. В электроустановках с заземленной нейтралью нулевой проводник связан с нейтралью трансформатора. Нейтраль трансформатора объединена с контуром заземления. При замыкании фазы на фазу, на корпус или ноль получается электрическая цепь. Такую цепь называют петля фаза-ноль. При межфазном замыкании ток в контуре будет больше, чем при однофазном замыкании. Сопротивление петли фаза-ноль должно быть как можно более маленьким, тогда ток короткого замыкания в петле будет наибольшим и защита сработает быстрее. Измерение петли фаза-ноль и токов коротких фазных замыканий проводится для определения времени срабатывания защитных устройств. По полученному значению сопротивления петли фаза-ноль расчетом получают значение тока короткого замыкания. От величины тока зависит время отработки аппарата защиты. В качестве аппарата защиты обычно выступает автоматический выключатель. Время срабатывания автомата должно удовлетворять требованиям правил устройства электроустановок. Если это время не выходит за рамки 5 секунд для 380 Вольт и 0,4 секунд для 220 Вольт, то грубо защиту линии можно считать достаточной. Автоматическое отключение питания должно обеспечить защиту от поражения электрическим током при косвенных прикосновениях и коротких замыканиях. Чем быстрее сработает автоматический выключатель, тем меньшие повреждения будут нанесены людям и проводке в электроустановке, ведь при коротком замыкании мгновенно повышается значение тока, и температура проводника резко возрастает. При этом начинает плавиться и гореть изоляция. Даже нескольких секунд в простое срабатывания защиты может хватить для повреждения и возгорания десятков метров кабеля, так как от поврежденного кабеля воспламеняются соседние кабели. В последнее время при монтаже используют негорючий кабель, что помогает от возникновения пожаров, но не спасает проводку от повреждения, а помещения от задымления. При желании можно использовать и малодымный кабель, но финансовые условия не всегда позволяют это сделать. На сопротивление петли фаза-ноль влияет длинна линии, сечение проводников линии, способ соединения участков линии, качество прокладки линии, количество болтовых соединений. Вместе с проверкой самих аппаратов защиты измерение фаза-ноль дает хороший результат в обеспечении безопасности электроустановки.

    © Все материалы защищены законом РФ об авторских правах и ГК РФ. Запрещено полное копирование без разрешения администрации ресурса. Разрешено частичное копирование с прямой ссылкой на первоисточник. Автор статьи: коллектив инженеров ОАО «Энергетик ЛТД»

    В статье рассмотрены метод расчета сопротивления цепи фаза - ноль в электроустановках напряжением до 1000 В с глухозаземленной нейтралью и правила вычисления тока короткого замыкания в линии, что позволяет проверить согласование параметров цепи с характеристиками аппаратов защиты при электроустановки. Приведенные в статье данные предназначены в первую очередь для расчетов распределительных и групповых сетей.

    Для выполнения расчетов токов короткого замыкания в трансформаторных подстанциях необходимо дополнительно учитывать тип, мощность, схему подключения, и напряжение на входе трансформатора. Поэтому использование данной работы для расчета трансформаторных подстанций позволит лишь приблизительно оценить их параметры.

    В общем случае сопротивление цепи фаза ноль R L - N равно:

    где Z т /3 - сопротивление трансформатора, Ом; R Σ пер - суммарное переходное сопротивление контактов, Ом; R Σ авт -суммарное сопротивление всех автоматических выключателей, Ом; R n - удельное сопротивление n-го участка цепи Ом/км (по таблице 1); L n - длина n-го участка цепи, км; R дуги - сопротивление дуги в месте короткого замыкания, Ом.

    Таблица 1

    Сечение фазных жил мм 2

    Сечение нулевой жилы мм 2

    Полное сопротивление цепи фаза - ноль, Ом/км при температуре жил кабеля +65 градусов

    Материал жилы:

    Алюминий

    Z цепи (кабеля)

    Z цепи (кабеля)

    Таблица 2

    Мощность трансформатора, кВ∙А

    Сопротивление трансформатора, Zт/3, Ом (Δ/Υ)

    Таблица 3

    I ном. авт. выкл, А

    50 и более

    Таблица 4

    R цепи, Ом

    При проектировании групповой сети, если питающая и распределительная сеть уже проложены, целесообразно выполнить измерение сопротивления цепи фаза - ноль от трансформатора до шин группового щита. Это может значительно уменьшить вероятность ошибок при расчетах групповой сети. В этом случае сопротивление рассчитываем по формуле:

    R L - N = R расп + R пер.гр + R авт.гр + Rn гр ∙Ln гр +Rдуги (2)

    где, R расп - измеренное сопротивление цепи фаза - ноль линии, подключаемой к вводному автоматическому выключателю группового щитка, Ом; R пер.гр - сопротивление переходных контактов в групповой линии, Ом; R авт.гр - суммарное сопротивление автоматических выключателей - вводного группового щита и отходящей групповой линии, Ом; Rn гр - удельное сопротивление кабеля n-й групповой линии (по таблице 1), Ом/км; Ln гр - длина n-й групповой линии, км.

    Рассмотрим процесс вычисления сопротивления цепи фаза - ноль схемы, показанной на Рис.1 при однофазном коротком замыкании фазы на ноль в конце групповой линии.


    Исходные данные:

    Трансформатор мощностью 630 кВ∙А подключен по схеме «треугольник - звезда» - по таблице 2 находим Zт/3=0,014 Ом;

    Питающая сеть - кабель с алюминиевыми жилами длиной 80 метров имеет фазный проводник 150 мм 2 и нулевой - 50 мм 2 . По таблице 1 находим удельное сопротивление кабеля 0,986 Ом/км. Вычисляем его сопротивление (длины кабелей выражаем в километрах): 0,986 Ом/км∙0,08 км=0,079 Ом;

    Распределительная сеть - кабель с медными жилами длиной 50 метров и сечением жил 35 мм 2 . По таблице 1 находим удельное сопротивление кабеля 1,25 Ом/км. Вычисляем его сопротивление:

    1,25 Ом/км∙0,05 км=0,0625 Ом;

    Групповая сеть - кабель с медными жилами длиной 35 метров и сечением жил 2,5 мм 2 . По таблице 1 находим удельное сопротивление кабеля 17,46 Ом/км. Вычисляем его сопротивление:

    17,46 Ом/км∙0,035 км=0,61 Ом;

    Автоматический выключатель отходящий линии - 16 Ампер (с характеристикой срабатывания «С»), вводной автоматический выключатель группового щитка 32 Ампера, остальные автоматические выключатели в линии имеют номинальный ток более 50 Ампер. Вычисляем их сопротивление (по таблице 3) 0,01 Ом+0,004 Ом+3∙0,001 Ом=0,017 Ом;

    Переходные сопротивления контактов учтем только в групповой линии (точки подключения кабеля групповой линии к щитку и к нагрузке). Получаем 2∙0,01 Ом=0,02 Ом.

    Суммируем все полученные значения и получаем сопротивление цепи фаза - ноль без учета сопротивления дуги R L - N =0,014+0,079+0,0625+0,61+0,017+0,02=0,80 Ом.

    Из таблицы 4 берем сопротивление дуги 0,075 Ом, и получаем окончательное значение искомой величины R L - N =0,80 Ом+0,075 Ом=0,875 Ом.

    В Правилах устройства электроустановок (ПУЭ) задано наибольшее время отключения цепей при коротком замыкании в сетях с глухозаземленной нейтралью 0,2 секунды при напряжении 380 В и 0,4 секунды при напряжении 220В.

    Для обеспечения заданного времени срабатывания защиты необходимо, что бы при коротком замыкании в защищаемой линии возникал ток, превышающий не менее чем в 3 раза номинальный ток плавкой вставки ближайшего предохранителя (для взрывоопасных помещений не менее чем в 4 раза) и не менее чем в 3 раза ток расцепителя автоматического выключателя, имеющего обратнозависимую от тока характеристику (для взрывоопасных помещений не менее чем в 6 раз). Для автоматических выключателей с комбинированным расцепителем (имеющим тепловой расцепитель для защиты от перегрузок и электромагнитный расцепитель для защиты от токов коротких замыканий) ток короткого замыкания должен превысить ток срабатывания электромагнитного расцепителя не менее, чем в 1,2 - 1,25 раза.

    В настоящее время используются автоматические выключатели с различной кратностью токов срабатывания электромагнитного расцепителя к тепловому. Автоматические выключатели группы «В» имеют кратность в пределах от 3 до 5, группы «С» от 5 до 10, группы «D» от 10 до 20, группы «K» от 10 до 15 и группы «Z» от 2 до 3. При расчетах всегда берется максимальное значение кратности токов срабатывания расцепителей. Например для автоматического выключателя С16, ток короткого замыкания должен быть не менее 16 А∙10∙1,2=192 А (для автоматического выключателя С10 не менее10А∙10∙1,2=120 А и для С25 не менее 25 А∙10∙1,2=300 А). В приведенном выше примере мы получили сопротивление цепи фаза - ноль 0,875 Ом. При таком сопротивлении цепи ток короткого замыкания Iкз составит величину

    U ф / R L - N =220В/0,875 Ом=251 А. Следовательно групповая линия в приведенном примере защищена от токов коротких замыканий.

    Максимальное сопротивление цепи фаза - ноль для автоматического выключателя С16 составит величину 220 В/192А=1,14 Ом. В приведенном примере сети (Рис. 1) сопротивление цепи от трансформатора до шин группового щита составит 0, 875 Ом - 0,61 Ом=0.265 Ом. Следовательно максимально возможное сопротивление кабеля групповой линии будет равно 1,14 Ом - 0, 265 Ом=0,875 Ом. Его максимальную длину L при сечении жил кабелей 2,5 мм 2 определим при помощи таблицы 1.

    L, км=0,875 Ом/(17,46 Ом/км)=0,050 км.

    Всегда, когда есть возможность, следует рассчитывать групповую сеть с максимальным запасом по сопротивлению цепи фаза - ноль, особенно розеточную сеть. Часто нагрузки (утюг, чайник и другие бытовые приборы), в которых часто происходят замыкания, подключают к розетке через удлинитель. Начиная с определенной длины провода удлинителя, нарушается согласование параметров цепи с характеристиками аппаратов защиты, то есть оказывается недостаточным для мгновенного отключения сети. Отключение аварийного участка осуществится только тепловым расцепителем через сравнительно большой промежуток времени (несколько секунд), в результате чего кабели могут нагреться до недопустимо высоких температур вплоть до воспламенения изоляции.

    Проект электропроводки должен быть выполнен таким образом, что бы даже в случае воспламенения изоляции кабеля при коротком замыкании это не приводило к пожару. Именно поэтому возникли к прокладке скрытой электропроводки в стальных трубах в зданиях со строительными конструкциями, выполненными из горючих материалов. Во взрывоопасных зданиях целесообразно использовать более сложную защиту кабелей от воздействия .

    Одним из важных факторов в работе электрооборудования считается продолжительность его эксплуатации. Большое значение имеет надежная и устойчивая работа всех приборов и устройств. При различных повреждениях, коротких замыканиях и перегрузках, должно обеспечиваться моментальное срабатывание защитной аппаратуры и отключение опасного участка.

    Поэтому, необходимо заранее предусмотреть исправность самого электрооборудования и средств защиты, где большое значение имеет петля фаза-ноль.

    Физическое понятие петли фаза-ноль

    Во всех электроустановках, напряжением до 1000 вольт оборудуются системы глухого заземления. В такой системе, петля фаза-ноль представляет собой контур, образующийся в результате соединения проводника фазы и нулевого рабочего провода. В некоторых схемах, фазный проводник может соединяться с защитным проводником. Полученная цепь, во всех случаях, обладает собственным сопротивлением.

    Теоретические расчеты сопротивления петли представляют серьезную проблему. Это объясняется переходными сопротивлениями, которые имеются в рубильниках, контакторах, автоматах и прочей аппаратуре, включаемой в общую цепь. Особую сложность представляет вычисление точного пути токов при аварийных ситуациях, где нужно учитывать и влияние различных металлических конструкций.

    Поэтому, для получения точных данных о значении сопротивления, существуют специальные приборы, позволяющие автоматически учитывать все необходимые параметры.

    Проведение измерений

    Необходимость измерения петли фаза-ноль производится в определенных ситуациях. Прежде всего, это мероприятие осуществляется при вводе электроустановок в эксплуатацию после монтажа или реконструкции. В этом случае, тестирование проводится во время приемосдаточных испытаний. Внеплановые измерения могут проводиться по требованию организаций, контролирующих электробезопасность установок, а также, в любое время, по желанию клиента.

    Когда измеряется петля фаза-ноль, в обязательном порядке определяется величина сопротивления. Этот показатель получается в результате параметров сопротивления, образующегося в обмотках питания, фазном и нулевом проводнике. Одновременно измеряются переходные сопротивления контактов коммутационной аппаратуры.

    Кроме сопротивления, измеряется величина тока, образующегося при коротком замыкании. Для этого применяется специальный прибор, с помощью которого возможно автоматически получить все необходимые показатели.

    После проведения всех измерений все полученные результаты сравниваются с уставкой, рассчитанной на тот или иной автоматический выключатель.

    Все мы хотим видеть электроснабжение нашего электрооборудования безопасным и безупречным, но не всегда желаемое можно выдавать за действительное. В процессе беспощадной эксплуатации энергосистемы и электрооборудования, пользователи забывают о том, что её надо периодически обследовать и заранее выявлять всевозможные неисправности. Не стоит дожидаться, когда пропадёт фаза в недрах скрытой электропроводки , а для включения электрооборудования срочно надо искать калоши и диэлектрические перчатки , подпирая палкой постоянно отключающийся автоматический выключатель. Как же уберечь себя от свалившихся на голову неприятностей? Для предупреждения и устранения вышеперечисленных неисправностей, требуется периодически проводить комплекс электроизмерений. В этой статье мы хотим рассказать вам о замере сопротивления цепи «фаза - нуль». Как и для каких целей требуется проводить замер сопротивления цепи «фаза - нуль».

    Статьи цикла:»Электролаборатория и электроизмерения»:
    1. Электролаборатория и электроизмерения. Введение
    2. Что такое электролаборатория и для чего нужны электроизмерения
    3. Электролаборатория. Смета на проведение комплекса электроизмерений электросети. Расчёт стоимости работ на электроизмерения
    4. Электролаборатория проводит визуальный осмотр электропроводки и электрооборудования
    5. Электролаборатория. Замер заземления. Электропроводка. Электрооборудование
    6. Электролаборатория. Замер сопротивления изоляции. Электроизмерения. Электропроводка
    7. Электролаборатория. Замер сопротивления цепи “фаза-нуль”. Электроизмерения
    8. Электролаборатория – замеры и испытание выключателей автоматических управляемых дифференциальным током (УЗО)
    9. Электролаборатория выполняет испытания (прогрузку) автоматических выключателей
    10. Электролаборатория проводит электроизмерение “Замер сопротивления заземляющих устройств”

    Протокол электроизмерения петли "фаза - нуль"

    Читайте также:


      Очень часто специалисты электролаборатории (инженеры эл.наладчики) слышат в свою сторону укоры, что работа по комплексу электроизмерений бессмысленна и бесполезна, так как она влечёт за собой дополнительные затраты со стороны заказчиков. Давайте...


      Игорь Какое именно оборудование проверяется и какова периодичность профилактического измерения электрооборудования и электросетей в офисных центрах. Ответ: Испытаниям и электроизмерениям подлежат все электроустановки здания, от вводного аппарата защиты в вводно-распределительном устройстве до розеток...


      Андрей Электролаборатория в результате замера сопротивления петли “фаза-нуль” на мостовом кране (1971 года ввода в эксплуатацию) выдала заключение, что вводной автомат (А3144 600А Iуст. тепл=750А, Iкз=4200А) не прошел проверку, т.к. Zфаза-0=0.35 ...


      Виктор Степанович Что включает в себя замер полного сопротивления цепи ” фаза-нуль”? Подскажите, как часто должен производиться замер полного сопротивления цепи “фаза-нуль”? В соответствии с ПТЭЭП для контроля чувствительности защит к однофазным...


      Вячеслав Выполняя электроизмерения, замер сопротивления петли “фаза-нуль”, прибор показал на одной фазе 1.3 Ом, на остальных - 0.8 Ом. Питающий 4 х 6, медь. Длина кабельной линии 40метров, установлен...

    15 Комментария(-ев) на ”Электролаборатория. Замер сопротивления цепи «фаза-нуль». Электроизмерения”

      Здравствуйте!

      Подскажите каким проводом будит правильно заземлить передвижную эл.установку 380В. Проводом ПЩ или ПВЗ(в оболочке). Просто на одном комплексе видел заземление смонтированное проводом ПЩ который был в прозрачной оболочке на барабане.Комплексы нового поколения Узо итп.

      Здравствуйте,Алексей!Согласно ПУЭ, заземляющие проводники,а также защитные, и проводники уравнивания потенциалов в передвижных электроустановках должны быть медными, гибкими.Наименьшее сечение заземляющих проводников должно равняться:
      1.сечению фазных проводников, при сечении до 16 кв мм.,
      2.16 кв.мм. при сечении фазных проводников от 16 до 35 кв мм,
      3.сечению фазного провода пополам при сечении фазного провода более 35 кв мм.

      Здравствуйте! Большое спасибо за ответ. Про сечение ясно.Так каким проводом должно(и может допускаться) выполнение заземления. Многопроволочным проводом с полвинилхлорид. изоляцией или ПЩ без изоляции? Вот на это мне нужен ответ. Спасибо

      Здравствуйте! Проверяемый щиток состоит из вводного автомата и пяти отходящих. Проверяю петлю фаза-ноль. С отходящими все понятно: оцениваются по току КЗ. Но как вводить в отчет этот вводной автомат, и каковы критерии его оценки? Как быть с током КЗ для него?

      Здравствуйте, Олег!
      Значение тока однофазного короткого замыкания не нормируется, однако в соответствии с ПУЭ-7 ток должен быть достаточным для обеспечения требуемого времени срабатывания. Вам необходимо во время замеров сопротивления петли «фаза-нуль» определить фактическое значение тока однофазного короткого замыкания. Значение тока однофазного короткого замыкания определяется расчетным путем на основании значения сопротивления петли «фаза-нуль», полученного путем замеров во время испытаний. Требуется убедиться, что фактический ток однофазного короткого замыкания обеспечивает время срабатывания защитного аппарата, не превышающее значений, нормированных п. 1.7.79 ПУЭ-7 п. 1.7.79, для чего необходимо иметь времятоковую (обратнозависимую) характеристику этого защитного аппарата. Если документация завода-изготовителя на соответствующие защитные аппараты, содержащая времятоковые характеристики, отсутствует, то эти характеристики следует снимать при выполнении пусконаладочных работ или периодических электроиспытаний.

      Вы можете зарегистрироваться на форуме и более подробно обсудить «

      Здравствуйте, Георгий!
      Ваш вопрос перенаправлен на. Вы можете зарегистрироваться на форуме и более подробно обсудить « » с участниками форума.

    Сопротивление цепи фаза - ноль

    В статье рассмотрены метод расчета сопротивления цепи фаза - ноль в электроустановках напряжением до 1000 В с глухозаземленной нейтралью и правила вычисления тока короткого замыкания в линии, что позволяет проверить согласование параметров цепи с характеристиками аппаратов защиты при электроустановки. Приведенные в статье данные предназначены в первую очередь для расчетов распределительных и групповых сетей.

    Для выполнения расчетов токов короткого замыкания в трансформаторных подстанциях необходимо дополнительно учитывать тип, мощность, схему подключения, и напряжение на входе трансформатора. Поэтому использование данной работы для расчета трансформаторных подстанций позволит лишь приблизительно оценить их параметры.

    В общем случае сопротивление цепи фаза ноль R L - N равно:

    где Z т /3 - сопротивление трансформатора, Ом; R Σ пер - суммарное переходное сопротивление контактов, Ом; R Σ авт -суммарное сопротивление всех автоматических выключателей, Ом; R n - удельное сопротивление n-го участка цепи Ом/км (по таблице 1); L n - длина n-го участка цепи, км; R дуги - сопротивление дуги в месте короткого замыкания, Ом.

    Таблица 1

    Сечение фазных жил мм 2

    Сечение нулевой жилы мм 2

    Полное сопротивление цепи фаза - ноль, Ом/км при температуре жил кабеля +65 градусов

    Материал жилы:

    Алюминий

    Z цепи (кабеля)

    Z цепи (кабеля)

    Таблица 2

    Мощность трансформатора, кВ∙А

    Сопротивление трансформатора, Zт/3, Ом (Δ/Υ)

    Таблица 3

    I ном. авт. выкл, А

    50 и более

    Таблица 4

    R цепи, Ом

    При проектировании групповой сети, если питающая и распределительная сеть уже проложены, целесообразно выполнить измерение сопротивления цепи фаза - ноль от трансформатора до шин группового щита. Это может значительно уменьшить вероятность ошибок при расчетах групповой сети. В этом случае сопротивление рассчитываем по формуле:

    R L - N = R расп + R пер.гр + R авт.гр + Rn гр ∙Ln гр +Rдуги (2)

    где, R расп - измеренное сопротивление цепи фаза - ноль линии, подключаемой к вводному автоматическому выключателю группового щитка, Ом; R пер.гр - сопротивление переходных контактов в групповой линии, Ом; R авт.гр - суммарное сопротивление автоматических выключателей - вводного группового щита и отходящей групповой линии, Ом; Rn гр - удельное сопротивление кабеля n-й групповой линии (по таблице 1), Ом/км; Ln гр - длина n-й групповой линии, км.

    Рассмотрим процесс вычисления сопротивления цепи фаза - ноль схемы, показанной на Рис.1 при однофазном коротком замыкании фазы на ноль в конце групповой линии.

    Исходные данные:

    Трансформатор мощностью 630 кВ∙А подключен по схеме «треугольник - звезда» - по таблице 2 находим Zт/3=0,014 Ом;

    Питающая сеть - кабель с алюминиевыми жилами длиной 80 метров имеет фазный проводник 150 мм 2 и нулевой - 50 мм 2 . По таблице 1 находим удельное сопротивление кабеля 0,986 Ом/км. Вычисляем его сопротивление (длины кабелей выражаем в километрах): 0,986 Ом/км∙0,08 км=0,079 Ом;

    Распределительная сеть - кабель с медными жилами длиной 50 метров и сечением жил 35 мм 2 . По таблице 1 находим удельное сопротивление кабеля 1,25 Ом/км. Вычисляем его сопротивление:

    1,25 Ом/км∙0,05 км=0,0625 Ом;

    Групповая сеть - кабель с медными жилами длиной 35 метров и сечением жил 2,5 мм 2 . По таблице 1 находим удельное сопротивление кабеля 17,46 Ом/км. Вычисляем его сопротивление:

    17,46 Ом/км∙0,035 км=0,61 Ом;

    Автоматический выключатель отходящий линии - 16 Ампер (с характеристикой срабатывания «С»), вводной автоматический выключатель группового щитка 32 Ампера, остальные автоматические выключатели в линии имеют номинальный ток более 50 Ампер. Вычисляем их сопротивление (по таблице 3) 0,01 Ом+0,004 Ом+3∙0,001 Ом=0,017 Ом;

    Переходные сопротивления контактов учтем только в групповой линии (точки подключения кабеля групповой линии к щитку и к нагрузке). Получаем 2∙0,01 Ом=0,02 Ом.

    Суммируем все полученные значения и получаем сопротивление цепи фаза - ноль без учета сопротивления дуги R L - N =0,014+0,079+0,0625+0,61+0,017+0,02=0,80 Ом.

    Из таблицы 4 берем сопротивление дуги 0,075 Ом, и получаем окончательное значение искомой величины R L - N =0,80 Ом+0,075 Ом=0,875 Ом.

    В Правилах устройства электроустановок (ПУЭ) задано наибольшее время отключения цепей при коротком замыкании в сетях с глухозаземленной нейтралью 0,2 секунды при напряжении 380 В и 0,4 секунды при напряжении 220В.

    Для обеспечения заданного времени срабатывания защиты необходимо, что бы при коротком замыкании в защищаемой линии возникал ток, превышающий не менее чем в 3 раза номинальный ток плавкой вставки ближайшего предохранителя (для взрывоопасных помещений не менее чем в 4 раза) и не менее чем в 3 раза ток расцепителя автоматического выключателя , имеющего обратнозависимую от тока характеристику (для взрывоопасных помещений не менее чем в 6 раз). Для автоматических выключателей с комбинированным расцепителем (имеющим тепловой расцепитель для защиты от перегрузок и электромагнитный расцепитель для защиты от токов коротких замыканий) ток короткого замыкания должен превысить ток срабатывания электромагнитного расцепителя не менее, чем в 1,2 - 1,25 раза.

    В настоящее время используются автоматические выключатели с различной кратностью токов срабатывания электромагнитного расцепителя к тепловому. Автоматические выключатели группы «В» имеют кратность в пределах от 3 до 5, группы «С» от 5 до 10, группы «D» от 10 до 20, группы «K» от 10 до 15 и группы «Z» от 2 до 3. При расчетах всегда берется максимальное значение кратности токов срабатывания расцепителей. Например для автоматического выключателя С16, ток короткого замыкания должен быть не менее 16 А∙10∙1,2=192 А (для автоматического выключателя С10 не менее10А∙10∙1,2=120 А и для С25 не менее 25 А∙10∙1,2=300 А). В приведенном выше примере мы получили сопротивление цепи фаза - ноль 0,875 Ом. При таком сопротивлении цепи ток короткого замыкания Iкз составит величину

    U ф / R L - N =220В/0,875 Ом=251 А. Следовательно групповая линия в приведенном примере защищена от токов коротких замыканий.

    Максимальное сопротивление цепи фаза - ноль для автоматического выключателя С16 составит величину 220 В/192А=1,14 Ом. В приведенном примере сети (Рис. 1) сопротивление цепи от трансформатора до шин группового щита составит 0, 875 Ом - 0,61 Ом=0.265 Ом. Следовательно максимально возможное сопротивление кабеля групповой линии будет равно 1,14 Ом - 0, 265 Ом=0,875 Ом. Его максимальную длину L при сечении жил кабелей 2,5 мм 2 определим при помощи таблицы 1.

    L, км=0,875 Ом/(17,46 Ом/км)=0,050 км.

    Всегда, когда есть возможность, следует рассчитывать групповую сеть с максимальным запасом по сопротивлению цепи фаза - ноль, особенно розеточную сеть. Часто нагрузки (утюг, чайник и другие бытовые приборы), в которых часто происходят замыкания, подключают к розетке через удлинитель. Начиная с определенной длины провода удлинителя, нарушается согласование параметров цепи с характеристиками аппаратов защиты, то есть оказывается недостаточным для мгновенного отключения сети. Отключение аварийного участка осуществится только тепловым расцепителем через сравнительно большой промежуток времени (несколько секунд), в результате чего кабели могут нагреться до недопустимо высоких температур вплоть до воспламенения изоляции.

    Проект электропроводки должен быть выполнен таким образом, что бы даже в случае воспламенения изоляции кабеля при коротком замыкании это не приводило к пожару. Именно поэтому возникли к прокладке скрытой электропроводки в стальных трубах в зданиях со строительными конструкциями, выполненными из горючих материалов. Во взрывоопасных зданиях целесообразно использовать более сложную защиту кабелей от воздействия.

    Электричество в настоящее время – это не только удобство и качество проживания, но это и большая опасность для человека. И хорошо, если проводку в доме делают профессионалы. Ведь свою работу они обязательно проверяют на степень безопасности. Каким образом? Для этого используется метод, основанный на создании высокой нагрузки в электрической разводке . Этот метод электрики называют измерением сопротивления петля фаза ноль.

    Начать надо с пути, который проходит электрический ток от подстанции до розетки в доме. Обращаем ваше внимание, что в старых домах в электрике чаще всего присутствует сеть без заземляющего контура (земля), то есть, к розетке подходит фазный провод и нулевой (фаза и ноль).

    Конечно, грамотно проведенный монтаж – это гарантия корректной работы сетевого участка. Если в процессе сборки и разводки были сделаны отклонения от норм и требований или просто сделаны ошибки, то это гарантия увеличения потерь, сбоя работы сети, аварий. Вот почему специалисты проводят измерения показателей сети и анализируют их. Что это такое, и как формируется проверочная схема.

    Видео измерения петля фаза ноль

    Как измеряется сеть

    Что это значит?

    Необходимо понять, что электродвижущая сила, которая появляется в обмотках трансформатора, образует электрический ток. Он теряет свое напряжение при прохождении через потребителя и подводящие провода. При этом сам ток преодолевает несколько видов сопротивления:

    Как измерить сопротивление петля фаза ноль

    Чтобы подсчитать полное сопротивление сети (петля фазы и ноля), необходимо определить электродвижущую силу , которая создается на обмотках трансформатора. Правда, на подстанцию без специального допуска не пустят, поэтому измерение петли фаза-ноль придется делать в самой розетке. При этом учитывайте, что розетка не должна быть нагружена. После чего необходимо замерить напряжение под нагрузкой. Для этого включается в розетку любой прибор, это может быть даже обычная лампочка накаливания. Замеряется напряжение и сила тока.

    Что касается точно проведенных замеров. Самодельными приборами это можно сделать, никаких проблем здесь нет, но вот только точность замеров в данном случае будет очень низкой. Поэтому для этого процесса рекомендуется использовать вольтметры и амперметры с высокой точностью (класс 0,2).


    Процесс измерения петля фаза ноль

    Где провести замер

    Измерение петли фаза-ноль – розетки. Но опытные электрики знают, что это место не единственное. К примеру, дополнительное место – это клеммы в распределительном щите . Если в дом заводится трехфазная электрическая сеть, то проверять сопротивление петли фаза ноль надо на трех фазных клеммах. Ведь всегда есть вероятность, что контур одной из фаз был собран неправильно.

    Цель проводимых замеров


    Замер сопротивления петля фаза ноль

    Что касается второй позиции. В принципе, здесь также необходимо провести некоторые расчеты, основанные на законе и формуле Ома. Основная задача определить силу тока короткого замыкания, ведь чаще всего от него и надо будет защищать электрическую сеть . Поэтому в данном случае используется формула:

    I = 16 х 10 х 1,1 = 176 А. Расчетная сила тока короткого замыкания у нас составила – 150 А. о чем это говорит.

    • Во-первых, автомат был неправильно выбран и установлен. Его надо обязательно заменить.
    • Во-вторых, ток КЗ в сети меньше, чем автомата. Значит, он не отключится. А это может привести к пожару.

    Электричество в настоящее время – это не только удобство и качество проживания, но это и большая опасность для человека. И хорошо, если проводку в доме делают профессионалы. Ведь свою работу они обязательно проверяют на степень безопасности. Каким образом? Для этого используется метод, основанный на создании высокой нагрузки в электрической разводке. Этот метод электрики называют измерением сопротивления петли фаза ноль.

    Что это такое, и как формируется проверочная схема

    Начать надо с пути, который проходит электрический ток от подстанции до розетки в доме. Обращаем ваше внимание, что в старых домах в электрике чаще всего присутствует сеть без заземляющего контура (земля), то есть, к розетке подходит фазный провод и нулевой (фаза и ноль).

    Итак, от подстанции до дома сеть может быть длиною в несколько сот метров, к тому же она разделена на несколько участков, где используются разного сечения кабели и несколько распределительных щитов. То есть, это достаточно сложная коммуникация. Но самое главное, весь участок имеет определенное сопротивление, которое приводит к потерям мощности и напряжения. И это независимо от того, качественно ли проведена сборка и монтаж или не очень. Этот факт известен специалистам, поэтому проект сети делается с учетом данных потерь.

    Конечно, грамотно проведенный монтаж – это гарантия корректной работы сетевого участка. Если в процессе сборки и разводки были сделаны отклонения от норм и требований или просто сделаны ошибки, то это гарантия увеличения потерь, сбоя работы сети, аварий. Вот почему специалисты проводят измерения показателей сети и анализируют их.

    Необходимо отметить, что вся электрическая цепочка – это зацикленный контур, образованный фазным контуром и нулевым. По сути, это своеобразная петля. Поэтому ее так и называют петля фаза ноль.

    Как измеряется сеть

    Чтобы это понять, необходимо рассмотреть схему, в которой присутствует потребитель, подключенный через обычную розетку. Так вот к розетке, как уже было сказано выше, подводятся фаза и ноль. При этом до розетки происходит потеря напряжения за счет сопротивления магистральных кабелей и проводов. Это известно давно, описан данный процесс формулой Ома:

    Правда, эта формула описывает соотношение величин постоянного электрического тока. Чтобы перевести ее на ток переменный, придется учитывать некоторые показатели:

    • Активная составляющая сопротивления сети.
    • Реактивная, состоящая из емкостной и индуктивной части.

    Что это значит? Необходимо понять, что электродвижущая сила, которая появляется в обмотках трансформатора, образует электрический ток. Он теряет свое напряжение при прохождении через потребителя и подводящие провода. При этом сам ток преодолевает несколько видов сопротивления:

    • Активное – это потребитель и провода. Это самая большая часть сопротивления.
    • Индуктивное – это сопротивление встроенных обмоток.
    • Емкостное – это сопротивление отдельных элементов.


    Чтобы подсчитать полное сопротивление сети (петля фазы и ноля), необходимо определить электродвижущую силу, которая создается на обмотках трансформатора. Правда, на подстанцию без специального допуска не пустят, поэтому измерение петли фаза-ноль придется делать в самой розетке. При этом учитывайте, что розетка не должна быть нагружена. После чего необходимо замерить напряжение под нагрузкой. Для этого включается в розетку любой прибор, это может быть даже обычная лампочка накаливания. Замеряется напряжение и сила тока.

    Внимание! Нагрузка на розетке должна быть стабильной в процессе проведения замеров. Это первое. Второе – оптимальным вариантом считается, если в схеме ток будет силой от 10 до 20 ампер. В противном случае дефекты сетевого участка могут не проявиться.

    Теперь по закону Ома можно определить полное сопротивление петли. При этом придется учитывать, что напряжение (замеряемое) в розетке может отклоняться от номинального при нагрузке и без таковой. Поэтому сначала надо высчитать сопротивление при разных величинах напряжения. Понятно, что при нагрузке напряжение будет больше, поэтому полное сопротивление петли – это разница двух сопротивлений:

    Rп=R2-R1, где R2 – это сопротивление петли при нагрузке, R1 – без таковой.

    Что касается точно проведенных замеров. Самодельными приборами это можно сделать, никаких проблем здесь нет, но вот только точность замеров в данном случае будет очень низкой. Поэтому для этого процесса рекомендуется использовать вольтметры и амперметры с высокой точностью (класс 0,2). Правда, такие измерительные приборы сегодня используются в основном в измерительных лабораториях. Обращаться с ними надо уметь. К тому же такие приборы требуют частого проведения тестирования.


    Хотя надо отдать должное рынку, сегодня можно такие приборы приобрести в свободном доступе. Стоят они недешево, но для профессионала это необходимая вещь.

    Где провести замер

    Измерение петли фаза-ноль – розетки. Но опытные электрики знают, что это место не единственное. К примеру, дополнительное место – это клеммы в распределительном щите. Если в дом заводится трехфазная электрическая сеть, то проверять сопротивление петли фаза ноль надо на трех фазных клеммах. Ведь всегда есть вероятность, что контур одной из фаз был собран неправильно.

    Цель проводимых замеров

    Итак, цели две – определение качества эксплуатируемых сетей и оценка надежности защитных блоков и приборов.

    Что касается первой позиции, то здесь придется сравнивать полученные замеры, а, точнее, сопротивление петли с проектной. В данном случае, если расчетный показатель оказался выше нормативного, то на поверку явно неправильно произведенный монтаж или другие дефекты магистрали. К примеру, грязь или коррозия контактов, малое сечение кабелей и проводов, неграмотно проведенные скрутки, плохая изоляция и так далее. Если проект электрической сети по каким-то причинам отсутствует, то для сравнения расчетного сопротивления петли с номинальным необходимо будет обратиться в проектную организацию. Чтобы разобраться в таблицах и расчетах самому, надо в первую очередь обладать инженерными знаниями по электрике.


    Что касается второй позиции. В принципе, здесь также необходимо провести некоторые расчеты, основанные на законе и формуле Ома. Основная задача определить силу тока короткого замыкания, ведь чаще всего от него и надо будет защищать электрическую сеть. Поэтому в данном случае используется формула:

    Iкз=Uном/Rп.

    Если считать, что сопротивление петли фаза к нулю равно, например, 1,47 Ом, то сила тока короткого замыкания будет равна 150 ампер. Под эту величину и придется подбирать прибор защиты, то есть, автомат. Правда, в правилах ПУЭ есть определенные нормы, которые создают некий запас прочности. Поэтому Iном увеличивают на коэффициент 1,1.

    Подобрать автомат под все вышеуказанные величины можно, если сравнить их в таблицах ПУЭ. В нашем случае потребуется автомат класса «С» с Iном=16 А и кратностью 10. В итоге получаем:

    I=16х10х1,1=176 А. Расчетная сила тока короткого замыкания у нас составила – 150 А. о чем это говорит.

    • Во-первых, автомат был неправильно выбран и установлен. Его надо обязательно заменить.
    • Во-вторых, ток КЗ в сети меньше, чем автомата. Значит, он не отключится. А это может привести к пожару.

    Здравствуйте уважаемые посетители сайта "Помощь электрикам" Тема нашего разговора сегодня это замер сопротивления петли фаза ноль

    1. Вводная часть.

    Настоящая методика «Измерение сопротивления петли «фаза-нуль» распространяется на измерения в электроустановках 0,4кВ всех типов заземления нейтрали.

    В электроустановках напряжением ниже 1000В с глухозаземлённой и изолированной нейтралью защита участков сети осуществляется автоматическими выключателями реагирующими на сверхток, как основной параметр аварийного состояния электроустановки (ПУЭ гл.1.7). В электроустановках с изолированной нейтралью участки сети могут дополнительно защищаться устройствами защитного отключения (УЗО), реагирующими на сверхток, устройствами контроля изоляции и т.п. В электроустановках с глухозаземлённой нейтралью УЗО также могут применяться для защиты розеточных групп зданий, при условии, что к этим розеткам могут быть подключены переносные электроприборы.

    Для проверки временных параметров срабатывания защитных устройств реагирующих на сверхток (автоматических выключателей) проводится измерение полного сопротивления петли «фаза-нуль» или токов однофазных замыканий. Работа устройств защитного отключения проверяется другим образом.

    Полное сопротивление петли «фаза-нуль», и, соответственно, ток однофазного замыкания будет зависеть в основном от нескольких факторов:

    · характеристик силового трансформатора;

    · сечения фазных и нулевых жил питающего кабеля или воздушной линии (ВЛ);

    · контактных соединений в цепи.

    Проводимость фазных и нулевых проводников на практике можно не только определить, но и измерить, кроме того, расчётное определение проводимости, в стадии проектирования электроустановки может исключить множество проектных ошибок.

    Согласно ПУЭ проводимость нулевого рабочего должна быть не ниже 50% проводимости фазных проводников, в необходимых случаях она может быть увеличена до 100% проводимости фазных проводников. Проводимость нулевых защитных проводников должна соответствовать требованиям главы 1.7 ПУЭ:

    «1.7.126. Наименьшие площади поперечного сечения защитных проводников должны соответствовать табл. 1.

    Площади сечений приведены для случая, когда защитные проводники изготовлены из того же материала, что и фазные проводники. Сечения защитных проводников из других материалов должны быть эквивалентны по проводимости приведенным».

    После экспериментального определения сопротивления петли «фаза - нуль» производится расчётная проверка тока короткого замыкания и сравнение полученного тока с током срабатывания автоматического выключателя или другого устройства, защищающего данный участок сети. При прямых измерениях однофазных токов короткого замыкания время срабатывания защитных аппаратов определяется по измеренной величине этого тока.

    2. Требования к погрешности измерений.

    В соответствии с ГОСТ Р МЭК 61557-3-2006 максимальная погрешность измерительной аппаратуры применяемой для измерение сопротивления петли «фаза-нуль» в пределах диапазона измерений не должна превышать ±30% измеренного значения.

    3. Средства измерений и требования к ним.

    Измерительная аппаратура при использовании по назначению согласно ГОСТ Р МЭК 61557-1-2006 не должна подвергать опасности людей, домашний скот или имущество. Кроме того, измерительная аппаратура с дополнительными функциями, не подпадающими под действие стандартов серии МЭК 61557, также не должна создавать опасности для людей, домашнего скота или имущества.

    Измерительная аппаратура должна также соответствовать требованиям МЭК 61010-1, если иные требования не установлены настоящим стандартом.

    Если в измерительной аппаратуре предусмотрена индикация наличия напряжения на ее измерительных зажимах, то должна быть и индикация о нахождении сети под напряжением и о правильности подключения защитного и потенциального проводников.

    Конструкция зажимов должна обеспечивать надежное присоединение зонда к измерительной аппаратуре и не допускать его случайного прикосновения к частям, находящимся под напряжением.

    Конструкцией измерительной аппаратуры должна быть предусмотрена двойная или усиленная изоляция (класс защиты II).

    Конструкцией измерительной аппаратуры должна быть обеспечена степень загрязнения 2 по МЭК 61010-1.

    Конструкцией измерительной аппаратуры должна быть обеспечена категория перенапряжения II (см. МЭК 61010-1, приложение J).

    Конструкцией измерительной аппаратуры с питанием от распределительной сети должна быть обеспечена категория перенапряжения III (см. МЭК 61010-1, приложение J).

    Согласно ГОСТ Р МЭК 51557-3-2006 дополнительно к измерительной аппаратуре прилагаются следующие требования:

    Если при подключении нагрузочного устройства возникают переходные процессы в распределительной сети, погрешность в рабочих условиях применения не должна превышать установленных пределов в результате воздействия переходных процессов.

    Если при калибровке для обеспечения нулевого смещения используют внешние сопротивления, то это должно быть указано в нормативных документах на измерительную аппаратуру.

    Нулевое смещение должно поддерживаться в течение времени, указанного в нормативных документах на измерительную аппаратуру, независимо от любых изменений в ее диапазоне измерений или функционировании.

    Напряжение в точках измерения испытуемой цепи не должно превышать аварийного значения 50 В. Это может достигаться автоматическим отключением при возникновении аварийного напряжения, превышающего 50 В, в соответствии с МЭК 61010-1.

    Измерительная аппаратура должна выдерживать без повреждений, создающих опасность для пользователя, подключение к распределительной сети напряжением, равным 120 % номинального напряжения распределительной сети, на которое была рассчитана данная измерительная аппаратура. Защитные устройства при этом не должны срабатывать.

    Измерительная аппаратура должна выдерживать без повреждений, создающих опасность для пользователя, случайное подключение к распределительной сети напряжением, равным 173 % номинального напряжения, в течение 1 мин. Защитные устройства при этом могут срабатывать.

    При выполнении измерений применяют средства измерений, приведенные в таблице 2.

    Что касается меня то я использую старенький М-417 и современные ЕР-180 и MPI-511

    Метрологические характеристики указанных выше приборов, копии сертификатов на соответствие их указанным типам и право эксплуатации на территории Российской Федерации а также правила их эксплуатации и безопасности при их применении приводятся в копиях заводских паспортов. Копии прилагаются.

    4. Методы измерений.

    Проверка производится одним из следующих способов:

    · непосредственным измерением тока однофазного замыкания на корпус или нулевой защитный проводник;

    · измерением полного сопротивления цепи фаза — нулевой защитный проводник с последующим вычислением тока однофазного замыкания;

    · кроме того проверку можно производить расчетом по формулам:

    Zпет = Zп + Zт/3

    где Zп - полное сопротивление проводов петли фаза - нуль,

    Zт - полное сопротивление питающего трансформатора.

    По полному сопротивлению петли фаза - нуль определяется ток однофазного КЗ на землю:

    Iк = Uф/ Zпет

    Если расчёт показывает, что ток однофазного замыкания на землю на 30% превышает допустимый ток (допустимым считается ток, величина которого достаточна для срабатывания защитного аппарата в требуемый временной промежуток), то можно ограничиться расчётом. В противном случае должны быть проведены замеры полного сопротивления петли «фаза - нуль».

    Значения Zт для различных силовых трансформаторов приведены в таблице 3.

    Таблица 3.

    Кроме того на основании пунктов 3.1.9 - 3.1.12 ПУЭ можно составить таблицу наименьших допустимых кратностей тока однофазного замыкания на землю относительно номинальных уставок защитных устройств.

    Таблица 4.

    Следует отметить, что при расчете не учитываются сопротивления ошиновки от трансформатора до автоматического выключателя и самого выключателя. Однако практически ошибка здесь невелика и компенсируется тем, что в расчете производится арифметическое, а не геометрическое сложение составляющих.

    5. Требования безопасности.

    Перед проведением измерений необходимо провести организационно-технические мероприятия.

    Для каждого конкретного используемого вида измерительного средства проводить измерения в соответствие с требованием руководства по эксплуатации в части безопасного проведения измерений.

    К работе с приборами допускаются лица, ознакомленные с устройством приборов и порядком работы с ним, имеющие группу по электробезопасности не ниже 3.

    — заменять предохранители в приборе, подключенном к измеряемой цепи;

    — измерять прибором напряжение выше 250В;

    — нажимать кнопку «START» перед включением прибора в сеть.

    Если прибор находился в условиях отличных от рабочих его выдерживают в рабочих условиях не менее 2ч.

    При работе с прибором М417 следует соблюдать следующие правила:

    — прибор заземлению не подлежит;

    — с прибором должно работать не менее двух человек.

    — прибор необходимо подключать при отключенном питающем напряжении, контролируемого участка сети.

    Кроме того в своей работе следует руководствоваться «Инструкцией по охране труда №80 при проведении электрических испытаний и измерений», действующей на МП «Водоканал города Рязани».

    6. Требования к квалификации персонала.

    К проведению измерений допускаются лица электротехнического персонала, достигшие 18-летнего возраста, прошедшие медицинское освидетельствование, специальную подготовку и проверку знаний и требований, Межотраслевых правил по охране труда при эксплуатации электроустановок (МПБЭЭ) в объеме раздела 5.

    Персонал должен быть ознакомлен с данной методикой.

    7. Условия измерений.

    Измерение сопротивления петли «фаза - нуль» следует производить при положительной температуре окружающего воздуха, в сухую, спокойную погоду.

    Атмосферное давление особого влияния на качество проводимых испытаний не оказывает, но фиксируется для занесения данных в протокол.

    Влияние нагрева проводников на результаты измерений:

    Следует учитывать повышение сопротивления проводников, вызванное повышением температуры.

    Когда измерения проведены при комнатной температуре и малых токах, чтобы принять в расчет повышение сопротивления проводников в связи с повышением температуры, вызванного током замыкания, и убедиться для системы TN в соответствии измеренной величины сопротивления петли «фаза—нуль» требованиям таблицы 5, может быть применена нижеприведенная методика.

    Считают, что требования таблицы 5 выполнимы, если петля «фаза—нуль» удовлетворяет следующему уравнению

    Если измеренная величина сопротивления петли «фаза—нуль» превышает 2 U0/3Iа, более точную оценку соответствия требованиям таблицы 5 можно сделать путем измерения величины сопротивления петли «фаза—нуль» в следующей последовательности:

    · сначала измеряют сопротивление петли «фаза—нуль» источника питания на вводе электроустановки Ze;

    · измеряют сопротивление фазного и защитного проводников сети от ввода до распределительного пункта или щита управления;

    · измеряют сопротивление фазного и защитного проводников от распределительного пункта или щита управления до электроприемника;

    · величины сопротивлений фазного и нулевого защитного проводников увеличивают для учета повышения температуры проводников при протекании по ним тока замыкания. При этом необходимо учитывать величину тока срабатывания аппаратов защиты;

    · эти увеличенные значения сопротивления добавляют к величине сопротивления петли «фаза—нуль» источника питания Ze и в результате получают реальную величину Zs в условиях замыкания.

    8. Подготовка к проведению измерений.

    Согласно ПУЭ в электроустановках до 1000В с глухозаземлённой нейтралью с целью обеспечения автоматического отключения аварийного участка проводимость фазных и нулевых рабочих и нулевых защитных проводников должна быть выбрана такой, чтобы при замыкании на корпус или на нулевой проводник возникал ток короткого замыкания, который обеспечивает время автоматического отключения питания не превышающего значений, указанных в таблице 5.

    Таблица 5

    Наибольшее допустимое время защитного автоматического

    отключения для системы TN

    Номинальное фазное напряжение u 0 , В

    Время отключения, с

    Более 380

    Приведенные значения времени отключения считаются достаточными для обеспечения электробезопасности, в том числе в групповых цепях, питающих передвижные и переносные электроприемники и ручной электроинструмент класса 1.

    В цепях, питающих распределительные, групповые, этажные и др. щиты и щитки, время отключения не должно превышать 5 с.

    Допускаются значения времени отключения более указанных в таблице 5, но не более 5 с в цепях, питающих только стационарные электроприемники от распределительных щитов или щитков при выполнении одного из следующих условий:

    1) полное сопротивление, защитного проводника между главной заземляющей шиной и распределительным щитом или щитком не превышает значения, Ом:

    50 × Z ц /U 0 ,

    где Z ц — полное сопротивление цепи «фаза-нуль», Ом;

    U 0 — номинальное фазное напряжение цепи, В;

    50 — падение напряжения на участке защитного проводника между главной заземляющей шиной и распределительным щитом или щитком, В;

    2) к шине РЕ распределительного щита или щитка присоединена дополнительная система уравнивания потенциалов, охватывающая те же сторонние проводящие части, что и основная система уравнивания потенциалов.

    Для расчёта тока однофазного КЗ по результатам измерения сопротивления петли «фаза- нуль» используют следующую формулу:

    Z= U/I,

    где Z— измеренное сопротивление петли «фаза—нуль», Ом;

    U — измеренное напряжение сети, В;

    I — рассчитанный ток однофазного КЗ, А..

    По рассчитанному току однофазного КЗ определяют пригодность аппарата защиты установленного в цепи питания электроприёмника.

    В системе IT время автоматического отключения питания при двойном замыкании на открытые проводящие части должно соответствовать табл. 6.

    Таблица 6.

    Наибольшее допустимое время защитного автоматического отключения для системы IT

    Номинальное линейное напряжение U0, В

    Время отключения, с

    Более 6600,8

    Для определения времени отключения аппарата защиты после измерения сопротивления петли «фаза-нуль» и расчёта тока однофазного КЗ необходимо использовать времятоковые характеристики данного аппарата.

    Если в проверяемой цепи имеются выключатели УЗО, то на время измерения сопротивления их следует обойти при помощи мостов (обводов). Нужно помнить, что таким образом производятся изменения в измеряемой цепи и результаты могут несколько отличаться от действительности. Каждый раз после измерений следует удалить изменения, проведенные на время измерений, и проверить работу выключателя УЗО.

    Рисунок 1. Измерение сопротивления петли «фаза-нуль» методом шунтирования УЗО.

    При использование стрелочного прибора типа М 417, необходимо установить его на горизонтальную поверхность, чтобы избежать дополнительных составляющих погрешности.

    Кроме того, необходимо обеспечить надежный контакт в месте присоединения зажимов прибора к испытываемому оборудованию.

    9. Выполнение измерений.

    9.1.Измерение сопротивления петли «фаза-нуль» прибором М-417.

    Измерения производятся в строгом соблюдении с инструкцией на используемый прибор.

    Подготовка и порядок работы с прибором М-417:

    · установить М-417 на горизонтальную поверхность.

    · обесточить проверяемый участок цепи и присоединить один из проводов прибора к корпусу испытуемого электрооборудования (РЕ-проводник), а второй к фазному проводу (провод следует отключить от нагрузки, для того, чтобы нагрузка не вносила помехи в результат измерений).

    · включить сеть, при этом должна загореться сигнальная лампа «Z=», если последняя не загорается, измерение производитьзапрещается .

    · нажать кнопку «проверка калибровки»

    · ручкой «калибровка» установить указатель на нуль.

    · нажать кнопку «измерение» и произвести отсчёт по шкале прибора(при сопротивлении цепи «фаза нуль» больше 2 Ом загорается сигнальная лампа «Z> 2 Ом», если сигнальная лампа не загорается — произвести отсчёт по шкале прибора).

    · сопротивление цепи «фаза - нуль» равно показанию прибора за вычетом сопротивления соединительных проводов (0,1 Ом).

    · произвести измерения для остальных двух фаз нагрузки.

    9.2. Измерение сопротивления петли «фаза-нуль» прибором ЕР-180.

    Прибор позволяет проводить измерения как по трехпроводной (в электророзетках), так и по двухпроводной (в электророзетках и на электроустановках) схеме.

    В первом случае вилку прибора вставляют в розетку. Отсутствие свечения зеленого индикатора «L» свидетельствует о неправильном подключении проводников в розетке, либо об отсутствии нулевого защитного проводника. При проведении измерений в розетках с «зеркальным» расположением контактов нулевого защитного проводника следует перевернуть вилку прибора на 180̊ и убедиться в наличии свечения зеленого индикатора.

    Далее считываем с экрана прибора величину измеряемого напряжения U L—N или U L—PE, в зависимости от положения переключателя. Нажимаем кнопку «Старт» и, удерживая ее считываем с прибора величину сопротивления цепи L-PE.

    Поскольку в сети существуют помехи от изменяющейся нагрузки, рекомендуется провести несколько измерений и усреднить результат.

    Во втором случае к вилке подключается адаптер, входящий в комплект прибора. Выводы адаптера имеют щупы с подпружиненной изоляционной втулкой. Щуп с желто-зеленой маркировкой подключают к нулевому рабочему или нулевому защитному проводнику. Второй проводник подключают к одной из фаз питающей сети. При этом должен светиться зеленый индикатор. Прикасаются пальцем к сенсору на нижней стороне прибора. Свечение красного индикатора свидетельствует о том, что щуп с желто-зеленой маркировкой подключен не к нулевому проводу.

    Считываем с прибора величину напряжения. Нажимаем кнопку «Старт» и удерживая ее считывают величину сопротивления цепи L-PE или L-N в зависимости от подключения.

    Для уточнения результата из измеренной величины вычитают величину сопротивления адаптера 0,05 Ом.

    9.3. Измерение сопротивления петли «фаза-нуль» прибором MPI-511 .

    Для проведения измерения параметров петли короткого замыкания в цепи L-N или L-L необходимо:

    поворотный переключатель функции установить в положение U L—N,L—L ,Z L—N,L—L

    — измерительные провода подключить согласно рис.2,3

    ГОТОВО, нажать кнопку START

    Надпись ГОТОВО информирует о том, что напряжение на клеммах измерителя L и N находится в диапазоне, в котором можно выполнить измерения. В противном случае отображается надпись L-N. Если температура внутри измерителя возрастает выше допустимой

    На том же самом месте появляется символ.

    Результат измерений будет выглядеть следующим образом:

    Рис.4. Отображение информации на дисплее при измерении параметров петли короткого замыкания

    Прибор MPI-511 позволяет проводить измерения сопротивления петли короткого замыкания без изменений в сети с выключателями дифференцированного тока с расчетным током не ниже 30 мА.

    Для проведения измерения сопротивления петли короткого замыкания в цепи L-PE с выключателем УЗО следует:

    — поворотный переключатель функций установить в положение Z L-PE RCD

    — измерительные провода подключить согласно Рис.5б (провод N должен быть подключен);

    — когда на экране появится надпись ГОТОВО , нажать клавишуSTART .

    Измерение длится не более 32 секунд. Его можно прервать клавишей ESC .

    Рис.5. Измерение напряжения и полного сопротивления в защитной цепи (L-PE)

    Более подробный порядок работы с прибором MPI-511приводится в копии руководства по эксплуатации. Копия прилагается.

    10. Обработка результатов.

    10.1. Первичные записи рабочей тетради должны содержать следующие данные:

    · дату измерений;

    · температуру, влажность и давление;

    · наименование, тип, заводской номер оборудования;

    · номинальные данные объекта испытаний;

    · результаты испытаний;

    · используемую схему.

    10.2. По данным испытаний и измерений производятся соответствующие расчёты и сравнения. Вычислив ток однофазного КЗ (следует отметить что MPI-511 может выдавать результат измерений уже в виде тока короткого замыкания) необходимо определить время срабатывания защитного аппарата по его времятоковой характеристике, и затем дать заключение о времени срабатывания выключателя и его соответствии требованиям ПУЭ.

    Пример работы с время-токовой характеристикой автомати-ческого выключателя, выполненного в соответствии с ГОСТ Р 50345-99 представлен на рисунке 3.

    Определённый (измеренный, рассчитанный) ток однофазного КЗ откладывается на времятоковой характеристике в виде вертикальной прямой линии (на рисунке - линии коричневого и синего цветов). Зона токов правее синей линии обеспечивает срабатывание автоматического выключателя со временем менее 0,4 с (зелёная стрелка). Зона токов правее коричневой кривой обеспечивает срабатывание автоматического выключателя со временем менее 5 с. Таким образом считаем, что для обеспечения требуемого времени срабатывания автоматического выключателя в пределах менее 0,4 с ток КЗ должен превышать 10Iн для автоматического выключателя с характеристикой типа С (работает электромагнитный расцепитель). Если время срабатывания автоматического выключателя должно быть не более 5 с, то в этом случае считаем, что наиболее вероятно срабатывание обратнозависимого расцепителя, поэтому для определения зоны срабатывания необходимо пользоваться индивидуальной времятоковой характеристикой конкретного автоматического выключателя. На рисунке 3 индивидуальная времятоковая характеристика построена черной линией.

    10.3. Общий порядок определения погрешности измерений.

    Точность измерений зависит от метода измерений и класса точности выбранных средств измерений. Класс точности средства измерения определяется его погрешностью.

    Аналогичен приведенному в статье “ Заземляющие устройства. Испытания.”

    10.3.1. Методика расчета погрешности прибора ЕР-180.

    Максимально возможная абсолютная погрешность прибора в рабочих условиях применения определяется по формуле:

    δ max = ±(|δ o |+|δ t |+|δ M |+|δ u |+|δ k |),

    δ o - основная погрешность.

    При измерении напряжения δ o = ±(2%U X +2EMP), EMP = 1B.

    δ o = -0,1 ±15ЕМР, ЕМР = 0,01Ом

    При измерении сопротивлении цепи «фаза-нуль» в диапазоне от1,0 до 20,0 Ом

    δ o = ±(15%Z X +4EMP), EMP = 0,1 Ом

    δ t - погрешность обусловленная температурными условиями

    При измерении напряжения

    δ t = ±(2,5U X /100)(t-25)/10 (B)

    δ t = ±(2,5U X /100)(21-t)/10 (B)

    При измерении сопротивления цепи «фаза-нуль» в диапазоне от 0,1 до 1,0 Ом

    при температуре окружающего воздуха выше 25°С определяется по формуле:

    δ t = ±0,1(t-25)/10 (Ом)

    при температуре окружающего воздуха ниже 21°С определяется по формуле

    δ t = ±0,1(21-t)/10 (Ом)

    При измерении сопротивления цепи «фаза-нуль» в диапазоне от 1,0 до 20,0 Ом

    при температуре окружающего воздуха ниже 21°С определяется по формуле

    δ t = ±(10Z X /100)(21-t)/10 (Ом)

    при температуре окружающего воздуха выше 25°С определяется по формуле

    δ t = ±(10Z X /100)(t-25)/10 (Ом)

    δ M - погрешность обусловленная воздействие внешнего магнитного поля

    δ M = ±0,5 δ о

    δ u - погрешность обусловленная отклонением питающего напряжения

    при напряжении питания более 224В

    δ u = ±(5Z X /100)(U п -224)10/224

    при напряжении питания менее 216В

    δ u = ±(5Z X /100)(216-U п )10/216

    δ k - погрешность обусловленная не синусоидальностью входного сигнала

    δ k = ±0,5К Г Х Х /100,

    где К Г - коэффициент не синусоидальности кривой в процентах;

    Х Х - значение измеряемой величины.

    Следует отметить, что в определенных условиях составляющие дополнительной погрешности могут не учитываться, поскольку ничтожно малы.

    10.3.2. Методика расчета погрешности прибора МPI-511.

    Следует обратиться к ГОСТ Р МЭК 61557-1- 2006 и руководству по эксплуатации.

    11. Контроль погрешности результатов измерений.

    Средства измерений проходят периодическую поверку в органах ЦСМ, согласно требований паспортных данных и плана утвержденного главным инженером предприятия.

    Контроль за своевременным прохождением поверки средств измерений осуществляется специалистами цеха КИПиА.

    12. Оформление результатов измерений.

    Результаты измерений и вычислений (при необходимости) заносят в протокол (бланк прилагается), кроме того в протокол заносятся характеристики автоматических выключателей и на основании анализа результатов измерений и параметров соответствующих автоматических выключателей делается вывод о соответствии результатов измерений требованиям стандартов.

    13. Нормативная литература.

    1) ПУЭ изд.7. Новосибирск. Сибирское университетское издательство 2007г.

    2) Правила технической эксплуатации электроустановок потребителей (ПТЭЭП) М.ОМЕГА-Л 2006г.

    3) Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок. ПОТ РМ-016-2001. РД 153-34.0-03.150-00, М.ОМЕГА-Л 2006г.

    4) ГОСТ Р50571.16-2007 Электроустановки низковольтные.Часть6. Испытания. М. Госстандарт России

    5) ГОСТ 12.3.019-80. Испытания и измерения электрические Общие требования безопасности. М., Издательство стандартов, 1987г.

    6) РД 34.45-51.300-97. Объем и нормы испытаний электрооборудования.

    7) ГОСТ Р МЭК 61557-1-2006. Сети электрические распределительные низковольтные напряжением до 1000 В переменного тока и 1500 В постоянного тока. Электробезопасность. Аппаратура для испытания, измерения или контроля средств защиты.

    Материал взят с сайта

    ЭЛЕКТРОлаборатория

    Так же вы можете скачать полную информация на этом сайте

    Вы можете приобрести полный комплект методик по измерениям и испытаниям электрооборудования до 1000В на следующей странице;

    Контур, состоящий из фазы трансформатора и цепи фазного и нулевого проводников. Сопротивление петли фаза-ноль определяет ток такого короткого замыкания.

    Если сопротивление петли фаза-ноль велико, то может оказаться, что ток короткого замыкания не достаточен для быстрого срабатывания защиты от короткого замыкания. И защита или вообще не отключает короткое замыкание, или отключает через длительное время. Все это время на корпусе электроаппарата присутствует опасное напряжение.

    В электроустановках до 1000 В с заземлением нейтрали безопасность обслуживания электрооборудования при пробое на корпус обеспечивается отключением поврежденного участка с минимальным временем. При замыкании фазного провода на соединенный с нейтралью трансформатора (или генератора) нулевой провод или корпус оборудования образуется контур, состоящий из фазы трансформатора и цепи фазного и нулевого проводников. Этот контур принято называть петлей «фаза-ноль»

    Проверка надежности и быстроты отключения поврежденного участка сети состоит в следующем:

    Определяется ток короткого замыкания на корпус Iкз. Этот ток сопоставляется с расчетным током срабатывания защиты испытуемого участка сети. Если возможный в данном участке сети ток аварийного режима превышает ток срабатывания защиты с достаточной кратностью, надежность отключения считается обеспеченной.

    Рис.5

    R т, Х т - активное и индуктивное сопротивление вторичной обмотки силового трансформатора

    R к - переходное сопротивление контактного соединения

    R а - сопротивление аппаратов защиты и коммутации

    R тт, Х тт - активное и индуктивное сопротивление вторичной обмотки трансформатора тока

    R пр, Х тпр - активное и индуктивное сопротивление провода (длину провода в обоих случаях принимаем 80м.)

    Z - электроприемник-потребитель.

    Индуктивное и активное сопротивление обмотки трансформатора (мОм)

    Сопротивления контактов определяются по следующей формуле

    Полное сопротивление петли фаза-ноль

    Поученный расчетный ток к.з. сравниваем с током срабатывания защитной аппаратуры. Если выполняется условие, то аппарат защиты сработает и его выбор произведен верно

    Произведем расчет сопротивления петли фаза-ноль

    В качестве трансформатора принимаем следующий

    U НН =0,4 кВ

    Р к =7,6 кВ

    Определяем сначала индуктивное и активное сопротивление обмотки трансформатора (мОм) по формулам (6.1) и (6.2)